
MAY/JUNE 2017

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

LOMBOK:
ANNOTATIONS FOR
CLEANER CODE

10
DATABASE
ACCESS WITH
STREAMS

34
JDEFERRED’S
ASYNC EVENT
MANAGEMENT

16
BEST PRACTICES
FOR LIBRARY
DESIGN

28

Libraries

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

01

//table of contents /

COVER ART BY PEDRO MURTEIRA

03
From the Editor
Writing your own annotations? Be

circumspect in your design.

05
Events
Upcoming Java conferences and events

34
Databases
Database Actions Using Java 8
Stream Syntax Instead of SQL
By Per Minborg

Speedment 3.0 enables Java developers

to stay in Java when writing database

applications.

42
Fix This
By Simon Roberts

Our latest code quiz

32
Java Proposals of Interest
JEP 262: Built-in Support for TIFF Files

47
User Groups
The Bangladesh JUG

48
Contact Us
Have a comment? Suggestion? Want to

submit an article proposal? Here’s how.

By Josh Juneau

Add Lombok to your project and get rid of most of your

boilerplate code.

16
JDEFERRED: SIMPLE
HANDLING OF PROMISES
AND FUTURES
By Andrés Almiray

Asynchronous operations

without the headaches

22
JSOUP HTML
PARSING LIBRARY
By Mert Çalışkan

Easily parse HTML, extract

speciied elements, validate

structure, and sanitize content.

28
DESIGNING AND
IMPLEMENTING
A LIBRARY
By Stephen Colebourne

The chief designer of Joda-

Time lays out best practices

for writing your own library.

//table of contents /

10
PROJECT LOMBOK:
CLEAN, CONCISE CODE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

02

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Publication Designer
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Account Manager
Mark Makinney

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@omeda.com

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2017, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ASSOCIATE

Certified Associate

PROFESSIONAL

Certified Professional

EXPERT

Certified Expert

MASTER

Certified Expert

SPECIALIST

Certified Specialist

Display Your Oracle Certification Digital Badge

Claim your certification badge and validate
your skills across all online platforms.

You’ve Earned It

Certified Professional

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:thomas.cometa%40sbcglobal.net?subject=
mailto:markmakinney%40hotmail.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=861#badge-2

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

03

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

In this issue, the lead feature is about a rightly
well-regarded library named Project Lombok.

This library enables you to avoid writing boiler-
plate code by using annotations. For example,
add @Data to a class and Lombok will generate the
getters and setters, plus other methods you’re
likely to want in a JavaBean-style data class—
toString() and so on. Lombok’s approach is
attractive to me—and to many developers—
in part because it’s useful, compact, and clear.
In addition, the project includes a tool called
“delombok,” which can remove the annotations
and insert the boilerplate code into your classes.
In this way, you can easily remove the dependency
on Lombok. The annotations are conservative in
their expression and their roles, and the project
has a clean, reversible implementation. Many more
annotations should follow this approach.

Annotations as they appear in Java itself
follow a similar understated model. Those anno-
tations, irst unveiled in Java 5, were elegant
and concise and didn’t attempt to do too much:
@Override and @Deprecated told you something
about the code, while @SuppressWarnings told the
tools that you knew what you were doing. The
intent was that tools, especially IDEs, would use
these markers to issue warnings and reminders.
None of the annotations actually changed pro-
gram behavior. This conservative approach by
the Java language team continued in Java 7, when
@SafeVarargs was added, and in Java 8, when
@FunctionalInterface was delivered.

In addition to the qualities I’ve already men-
tioned, these annotations are unambiguous. This
is a key and often overlooked aspect of annota-
tion design. In the quest for brevity, annotation

Keeping Annotations Useful
When designing annotations, be conservative and circumspect.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.

Built for modern app dev.

Built for you.

Oracle Cloud delivers

high-performance and

battle-tested platform

and infrastructure services

for the most demanding

Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

04

//from the editor /

authors too often push the respon-
sibility of intelligibility onto
developers. Look no further than
the lack of coordination in basic
syntax. A prime ofender here is
the family of not-null qualiiers.
@NotNull is such an annotation,
and so is @NonNull. This annota-
tion has a diferent meaning under
FindBugs. Likewise, @Nullable
means diferent things to the
Checker Framework and FindBugs.
This is not the way to go about
things. If you author annotations,
be clear and deinitely avoid syn-
onyms and homonyms.

In comparison to these short,
pithy annotations, Java EE intro-
duced the extensive use of annota-
tions. Soon, a series of annotations
replaced code, and the nature of
enterprise programming thereby
changed. Java EE acquired a sort of
embedded syntax that straddled
descriptions and commands. The
advent of this style reinvigorated
Java EE by making it far easier
to code and by getting rid of the
heaviness of its forebears.

However, this advance inspired
legions of frameworks to use and
overuse annotations, many of
which were uninspired formula-
tions. They introduced complexity
without good enough documenta-
tion by which to navigate the code.

As the annotations became com-
plex markers for actions deined
elsewhere, you ended up chasing
your tail just to determine what the
code you had right before you actu-
ally did. This was less than entirely
fun, which brings me to the second
problem with many annotations:
insuicient documentation. Unless
the meaning is utterly transparent
(and even then, as the preceding
examples demonstrated), docu-
ment the annotation thoroughly,
especially in frameworks. Err on
the side of overcommunication.

Finally, I need to stress the
importance of making annota-
tions a sound proposition for the
developer and, by extension, the
developer’s team. In this regard,
I am leery of IDE vendors’ cre-
ation of their own proprietary
annotation systems. All IDEs do
this to some extent, but I’ll pick
an example from the one I use
most. IntelliJ IDEA uses annota-
tions to deliver a minimal but
clever implementation of design
by contract (DbC)–style enforce-
ment of passed parameters and
return values. I applaud JetBrains
for providing a handy way to have
the IDE enforce method contracts
(and identify potential coding
errors that are inconsistent with
the contract requirements).

IntelliJ uses syntax like this:
@Contract("_, null -> null").
It means that the tagged method
accepts two parameters and
returns a null if the second param-
eter is null. Much as I like this
annotation, I feel uncomfortable
fully committing to it because it
creates a dependence on the IDE.
(Even though another IDE will skip
the annotation it doesn’t recognize,
I’ve now left an unused artifact in
my code that might create wasted
time for downstream developers
trying to understand its function.)
In addition, if my whole team is
not using the same IDE, then some
code won’t have these tests and my
hope of consistent DbC enforce-
ment is either compromised or
IDE-dependent.

Annotations are an important
part of programming in Java, and
their role is likely to expand. But
new annotations should be devised
with far greater circumspection
than in the past, named with care-
ful attention to predecessors, and
documented well, and they should
avoid the introduction of restric-
tive dependencies.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

#developersrule

developer.oracle.com

Get your free trial:

developer.oracle.com

Experience modern,

open cloud development

with a free trial to Oracle

Cloud platform and

infrastructure services.

Get a Free
Trial to
Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://checkerframework.org/manual/#choosing-nullness-tool
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

05

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

//events /

PHOTOGRAPH BY ZARNELL/GETTY IMAGES

Devoxx Poland

KRAKOW, POLAND

JUNE 21–23

For three days, 100 Java Champions, evangelists, and thought leaders
inspire 2,500 developers from 20 diferent countries at this installment
of the popular Devoxx conferences. Tracks on server-side Java, cloud and
big data, JVM languages, web and HTML5, and more are on ofer. Hacking
and networking round out the experience.

JEEConf
MAY 26–27

KIEV, UKRAINE

JEEConf is the largest Java con-
ference in Eastern Europe. The
annual conference focuses on
Java technologies for applica-
tion development. This year, it
ofers ive tracks and more than
50 speakers with an emphasis on
practical experience and devel-
opment of real projects. Topics
include modern approaches in the
development of distributed, highly
loaded, scalable enterprise sys-
tems with Java, among others.

jPrime
MAY 30–31

SOFIA, BULGARIA

jPrime is a relatively new con-
ference, with two days of talks
on Java, JVM languages, mobile
and web programming, and best
practices. The event is run by the
Bulgarian Java User Group and
provides opportunities for hack-
ing and networking.

GeekOut
JUNE 8–9

TALLINN, ESTONIA

This two-day Java developer con-
ference focuses on Java, the JVM,

programming languages and
methodologies, developer tooling,
solution architecture, and contin-
uous delivery. A product exhibi-
tion is included.

JBCN Conference
JUNE 19–21

BARCELONA, SPAIN

Hosted by the Barcelona Java
Users Group, this conference is
dedicated to Java and JVM devel-
opment. Share your knowledge
and experiences, and discover
how other developers are using
your favorite VM.

O’Reilly Fluent Conference
JUNE 19–20, TRAINING

JUNE 20–22, TUTORIALS

AND CONFERENCE

SAN JOSE, CALIFORNIA

Fluent ofers practical train-
ing for building sites and apps
for the modern web. This event
is designed to appeal to applica-
tion, web, mobile, and interactive
developers, as well as engineers,
architects, and UI/UX designers.
Training days and tutorials round
out the conference experience.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://devoxx.pl
http://jeeconf.com
http://jprime.io
https://2017.geekout.ee/
http://www.jbcnconf.com
http://conferences.oreilly.com/fluent/fl-ca

06

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

//events /

EclipseCon 2017
JUNE 20, “UNCONFERENCE”

JUNE 21–22, CONFERENCE

TOULOUSE, FRANCE

EclipseCon is all about the Eclipse
ecosystem. Contributors, adopt-
ers, extenders, service provid-
ers, consumers, and business and
research organizations gather to
share their expertise. The two-
day conference is preceded by an
“Unconference” gathering.

QCon New York
JUNE 26–28, CONFERENCE

JUNE 29–30, WORKSHOPS

NEW YORK, NEW YORK

QCon is a practitioner-driven con-
ference for technical team leads,

architects, engineering directors,
and project managers who inlu-
ence innovation in their teams.
The conference covers many dif-
ferent developer topics, frequently
including entire Java tracks.

Java Forum
JULY 5, WORKSHOP

JULY 6, CONFERENCE

STUTTGART, GERMANY

Organized by the Stuttgart Java
User Group, Java Forum typically
draws more than 1,000 partici-
pants. A workshop for Java deci-
sion-makers takes place on July 5.
The broader forum will be held on
July 6, featuring 40 exhibitors and
including lectures, presentations,

demos, and Birds of a Feather ses-
sions. (No English page available.)

The Developer’s Conference (TDC)
JULY 11–15

SÃO PAULO, BRAZIL

TDC is one of Brazil’s largest con-
ferences for students, developers,
and IT professionals. Java-focused
content on topics such as IoT, UX
design, mobile development, and
functional programming are fea-
tured. (No English page available.)

JCrete
JULY 16–21

KOLYMBARI, GREECE

This loosely structured “uncon-
ference” involves morning ses-
sions discussing all things Java,
combined with afternoons spent
socializing, touring, and enjoy-
ing the local scene. There is also a
JCrete4Kids component for intro-
ducing youngsters to program-
ming and Java. Attendees often
bring their families.

ÜberConf
JULY 18–21

DENVER, COLORADO

ÜberConf 2017 will be held at the
Westin Westminster in down-
town Denver. Topics include

Java 8, microservice architectures,
Docker, cloud, security, Scala,
Groovy, Spring, Android, iOS,
NoSQL, and much more.

JavaZone 2017
SEPTEMBER 12, WORKSHOPS

SEPTEMBER 13–14, CONFERENCE

OSLO, NORWAY

JavaZone is a conference for
Java developers created by the
Norwegian Java User Group,
javaBin. The conference has existed
since 2001 and now consists of
around 200 speakers and 7 parallel
tracks over 2 days, plus an addi-
tional day of workshops before-
hand. You will be joined by approx-
imately 3,000 of your fellow Java
developers. Included in the ticket
price is a membership in javaBin.

NFJS Boston
SEPTEMBER 29–OCTOBER 1

BOSTON, MASSACHUSETTS

Since 2001, the No Fluf Just Stuf
(NFJS) Software Symposium Tour
has delivered more than 450
events with more than 70,000
attendees. This event in Boston
covers the latest trends within
the Java and JVM ecosystem,
DevOps, and agile development
environments.

PHOTOGRAPH BY CHRISTIAN REIMER/FLICKR

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.eclipsecon.org/france2017
https://qconnewyork.com
http://www.java-forum-stuttgart.de/de/Home.html
http://www.thedevelopersconference.com.br/
http://www.jcrete.org
https://uberconf.com/conference/denver/2017/07/home
https://2017.javazone.no/tickets
https://nofluffjuststuff.com/home/main

07

//events /

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

JavaOne
OCTOBER 1–5

SAN FRANCISCO, CALIFORNIA

Whether you are a seasoned
coder or a new Java programmer,
JavaOne is the ultimate source of
technical information and learn-
ing about Java. For ive days, Java
developers gather from around
the world to talk about upcom-
ing releases of Java SE, Java EE,
and JavaFX; JVM languages; new
development tools; insights into
recent trends in programming;
and tutorials on numerous related
Java and JVM topics.

KotlinConf
NOVEMBER 2–3

SAN FRANCISCO, CALIFORNIA

KotlinConf is a JetBrains event
that provides two days of content
from Kotlin creators and commu-
nity members.

Devoxx
NOVEMBER 6–10

ANTWERP, BELGIUM

The largest gathering of Java
developers in Europe takes place
again this year in Antwerp.
Dozens of expert speakers deliver
hundreds of presentations on
Java and the JVM. Tracks include

server-side Java, cloud, big data,
and extensive coverage of Java 9.

QCon San Francisco
NOVEMBER 13–15, CONFERENCE

NOVEMBER 16–17, WORKSHOPS

SAN FRANCISCO, CALIFORNIA

Although the content has not
yet been announced, recent
QCon conferences have ofered
several Java tracks along with
tracks related to web develop-
ment, DevOps, cloud computing,
and more.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

Oracle Code Events
Oracle Code is a free event for
developers to learn about the
latest development technologies,
practices, and trends, including
containers, microservices and API
applications, DevOps, databases,
open source, development tools and low-code platforms,
machine learning, AI, and chatbots. In addition, Oracle
Code includes educational sessions for developing soft-
ware in Java, Node.js, and other programming languages
and frameworks using Oracle Database, MySQL, and
NoSQL databases.

US AND CANADA
JUNE 22, Atlanta, Georgia

EUROPE AND MIDDLE EAST
MAY 23, Moscow, Russia

JUNE 6, Brussels, Belgium

JULY 11, Tel Aviv, Israel

ASIA PACIFIC
JULY 14, Beijing, China

JULY 18, Sydney, Australia

AUGUST 4, Bangalore, India

AUGUST 30, Seoul, South
Korea

LATIN AMERICA
JUNE 27, São Paulo, Brazil

JUNE 29, Mexico City, Mexico

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.oracle.com/javaone/index.html
https://kotlinconf.com/
https://devoxx.be/
https://qconsf.com/
mailto:javamag_us%40oracle.com?subject=
https://go.oracle.com/oraclecode-about

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

09
ART BY PEDRO MURTEIRA

I
n an age of frameworks, there still remains a supreme need for
libraries, those useful collections of classes and methods that
save us a huge amount of work. For all the words spilled on the
reusability of object orientation (OO), it’s clear that code reuse has
been consistently successful only at the library level. It’s hard to

say whether that’s a failure of the promises of OO or whether those
promises were unlikely to ever deliver the hoped-for reusability.

In Stephen Colebourne’s article (page 28), he gives best practices for
writing libraries of your own.
Colebourne is the author of the
celebrated Joda-Time library,
which was the standard non-JDK
time and date library prior to
Java SE 8. In the article, he gives
best practices for architecting the
library and shares guidelines he
has learned along the way that
sometimes ly in the face of gen-
erally accepted programming pre-
cepts. Writing your own library?
Then start here.

We also examine three well-
designed libraries that provide
useful functionality but might
not be widely known. The irst of
these is Project Lombok (page 10),

which uses annotations to greatly reduce the writing of boilerplate
code—leading to fewer keystrokes and much more readable code.

Andrés Almiray’s article on the JDeferred library (page 16) is a deep
dive into the concepts of futures and promises, which are techniques for
deining, invoking, and getting results from asynchronous operations.
The built-in Java classes for futures and promises work well but can be
diicult to program. JDeferred removes the diiculty and, like Lombok,
leads to considerably cleaner code.

Finally, we revisit an article
we ran a year ago on jsoup
(page 22), which is one of the
inest ways of handling HTML:
parsing, scraping, manipulating,
and even generating it.

If libraries are not your favorite
topic, we have you covered with
a detailed discussion (page 34)
of how to use streaming syntax
rather than SQL when accessing
databases. In addition, we ofer
our usual quiz (this time with the
inclusion of questions from the
entry-level exam), our calendar of
events, and other goodness. (Note
that our next issue will be a jumbo
special issue on Java 9.) Enjoy!

Writing and Using Libraries
LIBRARIES

PROJECT LOMBOK 10 | JDEFERRED 16 | JSOUP 22 | WRITING YOUR OWN LIBRARY 28

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

10

//libraries /

Imagine that you are coding a Java application and creating a
plain old Java object (POJO), a Java class with several private

ields that will require getter and setter methods to provide
access. How many lines of code will be needed to generate
getters and setters for each of the ields? Moreover, adding
a constructor and a toString() method will cause even more
lines of code and clutter. That is a lot of boilerplate code.
How about when you are utilizing Java objects that need to be
closed after use, so you need to code a finally block or use
try-with-resources to ensure that the object closing occurs?
Adding finally block boilerplate to close objects can add a
signiicant amount of clutter to your code.

Project Lombok is a mature library that reduces boiler-
plate code. The cases mentioned above cover just a few of
those where Project Lombok can be a great beneit. The library
replaces boilerplate code with easy-to-use annotations. In this
article, I examine several useful features that Project Lombok
provides—making code easier to read and less error-prone and
making developers more productive. Best of all, the library
works well with popular IDEs and provides a utility to “delom-
bok” your code by reverting—that is, adding back all the boiler-
plate that was removed when the annotations were added.

Check for Nulls

Let’s start with one of the most basic utilities that Lombok
has to ofer. The @NonNull annotation, which should not be

confused with the Bean Validation annotation, can be used
to generate a null check on a setter ield. The check throws a
NullPointerException if the annotated class ield contains a
null value. Simply apply it to a ield to enforce the rule:

@NonNull @Setter

private String employeeId;

This code generates the following code:

public id setEmployeeId(@NonNull final String employeeId)

{

 if(employeeId == null) throw

 new java.lang.NullPointerException("employeeId");

 this.employeeId = employeeId;

Primitive parameters cannot be annotated with @NonNull. If
they are, a warning is issued and no null check is generated.

Concise Data Objects

Writing a POJO can be laborious, especially if there are many
ields. If you are developing a POJO, you should always pro-
vide private access directly to the class ields, while creating
accessor methods—getters and setters—to read from and
write to those ields. Although developing accessor methods
is easy, they generally are just boilerplate code. Lombok can

Project Lombok:
Clean, Concise Code
Add Lombok to your project and get rid of most of your boilerplate code.

JOSH JUNEAU

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://projectlombok.org/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

11

//libraries /

take care of generating these methods if a ield is annotated
with @Getter and @Setter. Therefore, the following two code
listings provide the exact same functionality.

Without Project Lombok:

private String columnName;

public String getColumnName(){

 return this.columnName;

}

public void setColumnName(String columnName){

 this.columnName = columnName;

}

Using Project Lombok:

@Getter @Setter private String columnName;

As you can see, Lombok not only makes the code more con-
cise, but it also makes the code easier to read and less error-
prone. These annotations also
accept an optional parameter
to designate the access level if
needed. More good news: @Getter
and @Setter respect the proper
naming conventions, so gener-
ated code for a Boolean ield results
in accessor methods beginning
with is rather than get. If they are
applied at the class level, getters
and setters are generated for each
nonstatic ield within the class.

In many cases, data objects
also should contain the equals(),
hashCode(), and toString()
methods. This boilerplate can

be taken care of by annotating a class with the @EqualsAnd
HashCode and @ToString annotations, respectively. These
annotations cause Lombok to generate the respective meth-
ods, and they are customizable so that you can specify ield
exclusions and other factors. By default, any nonstatic or
nontransient ields are included in the logic that is used to
compose these methods. These annotations use the attribute
exclude to specify methods that should not be included in the
logic. The callSuper attribute accepts a true or false, and it
indicates whether to use the equals() method of the super-
class to verify equality. The following code demonstrates the
use of these annotations.

@EqualsAndHashCode

@ToString(exclude={"columnLabel"})

public class ColumnBean {

 private BigDecimal id;

 private String columnName;

 private String columnLabel;

}

The @Data annotation can be used to apply functionality
behind all the annotations discussed thus far in this section.
That is, simply annotating a class with @Data causes Lombok
to generate getters and setters for each of the nonstatic class
ields and a class constructor, as well as the toString(),
equals(), and hashCode() methods. It also creates a con-
structor that accepts any inal ields or those annotated
with @NonNull as arguments. Finally, it generates default
toString(), equals(), and hashCode() methods that take all
class ields and methods into consideration. This makes the
coding of a POJO very easy, and it is much the same as some
alternative languages, such as Groovy, that ofer similar
features. Listing 1 (all listings for this article can be found in
Java Magazine’s download section) shows the full Java code for
the POJO that is generated by the following code:

Lombok can take
care of the logger
declaration if you
place the @Log
annotation (or an
annotation pertaining
to your choice of
logging API) on any
class that requires
logging capability.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/Home

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

12

//libraries /

@Data

public class ColumnBean {

 @NonNull

 private BigDecimal id;

 @NonNull

 private String columnName;

 @NonNull

 private String columnLabel;

}

Note that if you create your own getters or setters, Lombok
does not generate the code even if the annotations are pres-
ent. This can be handy if you wish to develop a custom getter
or setter for one or more of the class ields.

If you are merely interested in having constructors
generated automatically, @AllArgsConstructor and
@NoArgsConstructor might be of use. @AllArgsConstructor
creates a constructor for the class using all the ields that
have been declared. If a ield is added or removed from the
class, the generated constructor is revised to accommodate
this change. This behavior can be convenient for ensuring
that a class constructor always accepts values for each of the
class ields. The disadvantage of using this annotation is that
reordering the class ields causes the constructor arguments
to be reordered as well, which could introduce bugs if there
is code that depends upon the position of arguments when
generating the object. @NoArgsConstructor simply generates a
no-argument constructor.

The @Value annotation is similar to the @Data annotation,
but it generates an immutable class. The annotation is placed
at the class level, and it invokes the automatic generation of
getters for all private inal ields. No setters are generated, and
the class is marked as inal. Lastly, the toString(), equals(),
and hashCode() methods are generated, and a constructor is
generated that contains arguments for each of the ields.

Can’t My IDE Do That?

You might be asking yourself, “Can’t my IDE already do that
sort of refactoring?” Most modern IDEs—such as NetBeans,
Eclipse, and IntelliJ—ofer features such as encapsulation
of ields and auto-generation of code. These abilities are
great because they can signiicantly increase productivity.
However, these capabilities do not reduce code clutter, so
they can lead to refactoring down the road. Let’s say your Java
object has 10 ields. To conform to a JavaBean, it will contain
20 accessor methods (one getter and setter pair per ield).
That’s a lot of clutter. Also, what happens when you decide to
change one of your ield names? You’ll have to do some refac-
toring in order to change it cleanly. If you’re using Lombok,
you simply change the ield name and move on with your life.

Builder Objects

Sometimes it is useful to have the ability to develop a builder
object, which allows objects to be constructed using a step-
by-step pattern with controlled construction. For example,
in some cases large objects require several ields to be popu-
lated, which can be problematic when such an object is
implemented via a constructor.

Lombok makes it simple to create builder objects in much
the same way that it enables easy POJO creation. Annotating
a class with @Builder produces a class that adheres to the
builder pattern—that is, an inner builder class is produced
that contains each of the class ields. (“Builder” is pre-
ceded by the name of the class. So a class named Foo has a
FooBuilder class generated.) The generated builder class con-
tains a “setter” method for each of the class ields, but the
names of the methods do not include the usual “set” preix.
The methods themselves set the value that is passed into the
methods, and then they return the builder object. Listing 2 in
the downloadable code demonstrates a class that contains a
builder, and Listing 3 demonstrates the same object annotated
with @Builder.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

13

//libraries /

Several variations can be used with @Builder. For exam-
ple, the annotation can be placed on the class, on a construc-
tor, or on a method. Placing the annotation on a constructor
produces the same builder object shown in Listing 2, but it
generates methods for each of the constructor’s arguments in
the builder. This means that you can omit a class ield from
the constructor, or you can choose to include a superclass
ield in the constructor. The only way to include superclass
ields in a builder is for an object to contain a superclass.

The toBuilder attribute of the @Builder annotation
accepts true or false, and it can be used to designate whether
a toBuilder() method is included in the generated builder
object. This method copies the contents of an existing object
of the same type.

It is possible to treat one of the ields as a builder collec-
tion by annotating it with @Singular. This causes two adder
methods to be generated—one to add a single element and
another to add all elements. This annotation also causes a
clear() method to be generated, which clears the contents of
the collection.

Easy Cleanup

Lombok makes it easy to clean up resources as well. How
often have you either forgotten to close a resource or written
lots of boilerplate try-catch blocks to accommodate resource
closing? Thanks to the @Cleanup annotation, you no longer
need to worry about forgetting to release a resource.

Although the Java language now contains the try-with-
resources statement to help close resources, @Cleanup can
be a useful alternative in some cases, because it causes a
try-finally block to be generated around the subsequent
code, and then it calls the annotated resource’s close()
method. If the cleanup method for a given resource is not
named close(), the cleanup method name can be speciied
with the annotation’s value attribute. Listing 4 in the down-
loadable code demonstrates a block of code that contains

some lines to manually close the resource. Listing 5 demon-
strates the same block of code using @Cleanup.

It is important to note that in a case where code throws
an exception and then subsequent code invoked via @Cleanup
also throws an exception, the original exception will be hid-
den by the subsequently thrown exception.

Locking Safely

To ensure safety by having only one thread that can access a
speciied method at a time, the method should be marked as
synchronized. Lombok supplies an even safer way to ensure
that only one thread can access a method at a time: the
@Synchronized annotation. This annotation can be used only
on static and instance methods, just like the synchronized
keyword. However, rather than locking on this, the annota-
tion locks on a private ield named $lock for nonstatic
methods and on $LOCK for static methods. This ield is auto-
generated if it does not already exist, or you can create it
yourself. You can also specify a diferent lock ield by speci-
fying it as a parameter to @Synchronized. The following code
illustrates the use of @Synchronized:

@Synchronized

public static void helloLombok(){

 System.out.println("Lombok");

}

This solution can be a safer alternative to using the
synchronized keyword, because it allows you to lock on an
instance ield rather than on this.

Efortless Logging

Most logging requires some declaration to set up a logger
within each class. This code is deinitely repetitive boiler-
plate code. Lombok can take care of the logger declaration
if you place the @Log annotation (or an annotation pertain-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

14

//libraries /

ing to your choice of logging API) on any class that requires
logging capability.

For instance, if you wish to use a logging API—say,
Log4j 2—each class that uses the logger must declare some-
thing similar to the following:

public class ClassName(){

private static final org.apache.log4j.Logger log =

 org.apache.log4j.Logger.getLogger(ClassName.class);

. . .

// Use log variable as needed

}

Lombok makes it possible to do the following instead:

@Log4j2

public class ClassName(){

. . .

// Use log variable as needed

}

Listing 6 in the downloadable code shows an example using
Log4j 2. The name of the logger will automatically be the
same as its containing class’ name. However, this can be
customized by specifying the topic attribute of the respec-
tive logging annotation. For a complete listing of supported
logging APIs, refer to the Lombok documentation and the
Lombok Javadoc.

Other Useful Items

There are several other useful features Lombok ofers that
I haven’t yet covered. Let’s go through a couple of the most
highly used.
Informal declaration. The val keyword can be used in place of
an object type when you declare a local inal variable, much
like the val keyword that you have seen in alternative lan-

guages such as Groovy or Jython. Take the following code,
for instance:

final ArrayList<Job> myJobs = new ArrayList<Job>();

Using the val keyword, you can change the code to the
following:

val myJobs = new ArrayList<Job>();

There are some considerations for using the val keyword.
First, as mentioned previously, it marks the method declara-
tion as inal. Therefore, if you later need to change the value
of the variable, using the val keyword is not possible. It also
does not work correctly in some IDEs, so if you are trying to
mark local variables as inal in those IDEs, they are lagged
as errors.
Be sneaky with exceptions. There are occasions where excep-
tion handling can become a burden, and I’d argue that this
is typically the case when you are working with boilerplate
exceptions. Most of the time, Java allows you to easily see
where problems exist via the use of checked exceptions.
However, in those cases where checked exceptions are bur-
densome, you can easily hide them using Lombok.

The @SneakyThrows annotation can be placed on a method
to essentially “swallow” the exceptions, allowing you to
omit the try-catch block completely. The annotation allows
a method to handle all excep-
tions quietly, or you can specify
exactly which exceptions to
ignore by passing the excep-
tion classes to the annotation as
attributes. Listing 7 in the down-
loadable code demonstrates the
use of @SneakyThrows specifying
which exceptions to swallow.

The delombok utility
can be applied to
your code to convert
code that uses Lombok
back to vanilla Java.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jnb.ociweb.com/jnb/jnbJan2010.html
https://projectlombok.org/api/index.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

15

//libraries /

I want to reiterate that this Lombok feature should be
used with caution, because it can become a real issue if too
many exceptions are ignored.
Lazy getters. It is possible to indicate that a ield should have
a getter created once, and then the result should be cached
for subsequent invocations. This can be useful if your get-
ter method is expensive as far as performance goes. For
instance, if you need to populate a list from a database query,
or you need to access a web service to obtain the data for
your ield on the irst access, it might make sense to cache
the result for subsequent calls. To use this feature, a private
inal variable must be generated and initialized with the
expensive expression. You can then annotate the ield with

@Getter(lazy=true) to implement this functionality.
IDE compatibility. Lombok plays well with the major IDEs,
so simply including Lombok in your project and annotat-
ing accordingly typically does not generate errors in code or
cause errors when the generated methods are called. In fact,
in NetBeans the class Navigator is populated with the gen-
erated methods after annotations are placed and the code is
saved, even though the methods do not appear in the code.
Auto-completion works just as if the methods were typed into
the class, even when generated properties are accessed from
a web view in expression language.
Even more-concise Java EE. Over the past few years, Java EE
has been making good headway on becoming a very produc-
tive and concise platform. Those of you who recall the labo-
rious J2EE platform can certainly attest to the great number
of improvements that have been made. I was very happy to
learn that Lombok plays nicely with some Java EE APIs, such
as Java Persistence API (JPA). This means it is very easy to
develop constructs such as entity classes without writing all
the boilerplate, which makes the classes much more concise
and less error-prone. I’ve developed entire Java EE applica-
tions without any getters or setters in my entity classes, just

by annotating them with @Data. I suggest you play around
with it and see what works best for you.
Use caution and roll back. As with the use of any library, there
are some caveats to keep in mind. This is especially true
when you are thinking about future maintenance or modii-
cations to the codebase. Lombok generates code for you, but
that might cause a problem when it comes to refactoring. It
is diicult to refactor code that does not exist until compile
time, so be cautious with refactoring code that uses Lombok.
You also need to think about readability. Lombok annota-
tions might make troubleshooting a mystery for someone
who is not familiar with the library—and even for those
who are—if something such as @SneakyThrows is hiding
an exception.

Fortunately, Lombok makes it easy to roll back if you
need to. The delombok utility can be applied to your code to
convert code that uses Lombok back to vanilla Java. This util-
ity can be used via Ant or the command line.

Conclusion

The Lombok library was created to make Java an easier lan-
guage in which to code. It takes some of the most common
boilerplate headaches out of the developer’s task list. It can
be useful for making your code more concise, reducing the
chance for bugs, and speeding up development time. Try add-
ing Lombok to one of your applications and see how many
lines of code you can cut out. </article>

Josh Juneau (@javajuneau) is a Java Champion and a member of

the NetBeans Dream Team. He works as an application developer,

system analyst, and database administrator. He is a frequent con-

tributor to Oracle Technology Network and Java Magazine. Juneau

has written several books on Java and Java EE for Apress, and he

is a JCP Expert Group member for JSR 372 (JavaServer Faces

[JSF] 2.3) and JSR 378 (Portlet 3.0 Bridge for JSF 2.2).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

16

//libraries /

Developers are quite capable of dealing with events that
occur serially. However, we struggle with parallel and

delayed or deferred events. Fortunately, there are techniques
that can help to deal with delayed or deferred results. Principal
among these techniques are promises and futures, which are
the focus of this article, along with a library, JDeferred, that
greatly simpliies their use.

Wikipedia deines the key concept behind them as
an object that acts as a proxy for a result that’s initially
unknown. A future is a read-only placeholder view of a vari-
able; that is, its role is to contain a value and nothing more.
A promise is a writable, single-assignment container that
sets the value of the future. Promises may deine an API that
can be used to react to a future’s state changes, such as the
value being resolved, the value being rejected due to an error
(expected or unexpected), or the cancelation of the computing
task. Let’s look at this in more detail.

Promises in Java

The standard Java library includes various implementations of
the future concept based on java.util.concurrent.Future<V>,
with one recent addition made in Java 8 named Completable
Future. This class delivers the following abilities:

■■ Obtain a value that might be calculated in an asynchronous
fashion.

■■ Register mutator functions that afect the calculated result,
when it is ready.

■■ Establish a chain of functions that accept the result, poten-
tially combining it with other results.

■■ Initialize a background task that computes the expected
result.

You can get started quickly with CompletableFuture (I refer to
this type as a promise from now on) by using a pair of factory
methods found in this type. You can create a promise that
returns no value by invoking the following:

CompletableFuture.runAsync(new Runnable() { ... });

This version allows you to deine a task that performs some
computation, but the result is not important. What’s impor-
tant is whether the task was successfully completed or not.
You can attach a reaction, such as the following:

CompletableFuture<Void> promise =

 CompletableFuture.runAsync(() -> ...);

promise.thenApply(result -> {

 System.out.println("Task is finished!");

});

If you’re interested in the computed result, you must invoke a

JDeferred: Simple Handling
of Promises and Futures
Asynchronous operations without the headaches

ANDRÉS ALMIRAY

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Futures_and_promises
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

17

//libraries /

diferent factory method, one that takes a Supplier as argu-
ment, such as this:

CompletableFuture<String> promise =

 CompletableFuture.runAsync(() -> "hello");

promise.thenApply(result -> {

 System.out.println("Task result was " + result);

});

Once you have a reference to a promise, you can decorate
it with further operations that can react to the result being
computed, to an exception being thrown during computation,
or to additional transformations to the returned value.

Now let’s say that you’ve been asked to display a list
of repositories using the name of an organization found on
GitHub. This requires you to invoke a REST API call, process
the results, and display them. Let’s further assume that the
code must be assembled as a JavaFX application. This last
requirement forces you to think about using the concept of a
promise, because the computation of the repository list must
be executed in a background thread, but the result must be
published inside the UI thread—that’s the general rule when
building interactive JavaFX applications. Stated otherwise,
any operation that’s not related to the UI (such as a net-
work call, in our case) must occur in a thread that’s not the
UI thread; conversely, any operation that’s UI related (such
as updating a widget’s properties) must occur inside the UI
thread. I won’t get into the details of how the actual network
call is produced; however, the full working code can be found
on GitHub. The following snippet shows how to run the com-
putation in the background using a promise. In this project,
you’ll see that I inject some of the related resources:

public class GithubImpl implements Github {

 @Inject private GithubAPI api;

 @Inject private ExecutorService executorService;

 @Override

 public

 CompletableFuture<List<Repository>> repositories(

 final String organization) {

 Supplier<List<Repository>> supplier = () -> {

 Response<List<Repository>> r = null;

 try {

 r = api.repositories(organization).execute();

 } catch (IOException e) {

 throw new IllegalStateException(e);

 }

 if (r.isSuccessful()) {

 return r.body();

 }

 throw new IllegalStateException(r.message());

 };

 return CompletableFuture.supplyAsync(supplier,

 executorService);

 }

}

The code shows the network
call being issued, using
execute(). If a communica-
tion problem or a parsing
error occurs, an IOException
is thrown. If the call was suc-
cessful, the parsed body is
returned; if it was not success-
ful, an IllegalStateException
is thrown. Finally, the promise
is created by specifying a tar-
get Executor. You might notice
in the previous snippet that I

Pay close attention to
the order of the steps
used to process the
result supplied by the
promise. If the steps are
sequenced in a diferent
order, you’ll end up with
diferent, and perhaps
unexpected, behavior.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/aalmiray/javatrove/tree/master/github-api-06

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

18

//libraries /

did not deine an explicit exec-
utor. This is because the com-
mon ForkJoin pool is used if no
Executor is deined.

Now, let’s consume the
promised result. I’ll assume
there’s another component (a
controller, for example) whose
responsibility is to invoke the
service that was just deined
and populate a list with the
results. It also has the responsibility to display an error if an
exception occurs during the invocation of the service.

public class AppController {

 @Inject private AppModel model;

 @Inject private Github github;

 @Inject private ApplicationEventBus eventBus;

 public void loadRepositories() {

 model.setState(RUNNING);

 github.repositories(model.getOrganization())

 .thenAccept(model.getRepositories()::addAll)

 .exceptionally(t -> {

 eventBus.publishAsync(new ThrowableEvent(t));

 return null;

 })

 .thenAccept(result -> model.setState(READY));

 }

}

I’ll shortly explain how the last line is executed. Let’s decon-
struct the code snippet above line by line. First, the control-
ler sets some state, which is used by the UI to disable further
actions until the computation is inished. Next, it invokes the
service and obtains a promise, repositories, described in

the previous snippet. The promise allows the controller to set
further actions, such as processing the result—in this case,
adding the list of repositories to a model that is likely used
by the UI for display. It then handles any possible exceptions
that might have occurred during the execution of the service,
using the lambda in exceptionally(). Finally, it sets the state
again, regardless of success or failure, with the lambda in
thenAccept().

Caveats with Expectations

Pay close attention to the order of the steps used to process
the result supplied by the promise. If the steps are sequenced
in a diferent order, you’ll end up with diferent, and per-
haps unexpected, behavior. Let’s label the steps as SUCCESS,
FAILURE, ALWAYS. The current working order is thus:
SUCCESS, FAILURE, ALWAYS.

If you use a diferent sequence, it will produce diferent
results:

■■ ALWAYS, SUCCESS, FAILURE will not even compile,
because the ALWAYS changes the result type to Void as a
stand-in for the return from the lambda when a value is
not returned.

■■ SUCCESS, ALWAYS, FAILURE causes the UI to remain dis-
abled if an error occurred, because the model state the UI is
waiting on is never updated.

■■ FAILURE, SUCCESS, ALWAYS also causes the UI to remain
disabled if an error occurred—again, because the state is
not updated.

So, you must be very vigilant regarding the order of actions
attached to this type of promise. There’s another inherent
problem in CompletableFuture: the fact that it is both a future
and a promise. Promises allow you to react in an asynchro-
nous fashion that is nonblocking. However, Future has one
particular method that is blocking in nature: get(). This
means you can turn a nonblocking scenario into a blocking
one at any time—even inadvertently, because it’s so common

JDeferred allows you
to group callbacks
by responsibility,
thereby eliminating the
ordering problem with
CompletableFuture.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

19

//libraries /

to call get() on types that expose such a method (for exam-
ple, Optional).

You might ask, “What’s the big deal? As long as I don’t
call the get method, everything should be ine, right?” But
given that this type of promise is a future, there’s no guaran-
tee its get method won’t be called further down the stream
by another API that can handle futures. It would be much
better if this promise were not a future in the irst place. The
next question might be, “What if I wrap CompletableFuture
with a promise-only API?” Yes, that would work, but what
about switching to a ready-made promise library? I’m talking
about JDeferred.

Introducing JDeferred

JDeferred is a library that delivers the concept of promises.
It is inspired by JQuery and Android Deferred Object. It is
designed to be compatible with JDK 1.6 and later. Its API is
very simple, but don’t be fooled by this simplicity—you can
build stable, well-behaved, readable code with it. Let’s revisit
the previous example using JDeferred. The full code is avail-
able on GitHub, if you want to study it in detail.

JDeferred can be added to your project with the following
Maven entries:

<dependency>

 <groupId>org.jdeferred</groupId>

 <artifactId>jdeferred-core</artifactId>

 <version>1.2.5</version>

</dependency>

Or if you prefer Gradle, use this:

compile 'org.jdeferred:jdeferred-core:1.2.5'

JDeferred ofers a basic type, org.jdeferred.Promise, that
can be used to register actions or callbacks. A Promise may

return a value upon completion, throw an Object (any
Object—not just Throwable) if an error occurs, and return
intermediate results during computation. The last two
options are not possible with CompletableFuture. JDeferred
allows you to group callbacks by responsibility, thereby
eliminating the ordering problem discussed earlier with
CompletableFuture. Promises are usually created by another
component called the DeferredManager. In this way, the
library decouples the task-creation mechanism from the
promise itself, because these are two distinct concepts. Let’s
see how the implementation of the previous GitHub service
with JDeferred looks now.

public class GithubImpl implements Github {

 @Inject private GithubAPI api;

 @Inject private DeferredManager deferredManager;

 @Override

 public Promise<List<Repository>, Throwable, Void>

 repositories(final String organization) {

 return deferredManager.when(() -> {

 Response<List<Repository>> r =

 api.repositories(organization).execute();

 if (r.isSuccessful())

 { return r.body(); }

 throw new IllegalStateException(r.message());

 });

 }

}

The code above is functionally equivalent to the code exam-
ined earlier, but it is considerably cleaner. Tasks executed in
this way beneit from automatic error handling performed
by DeferredManager. This is why you don’t need to explicitly
handle communication and parsing errors like you did before.
These errors set the promise state to failed, and they are

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jdeferred.org/
https://github.com/aalmiray/javatrove/tree/master/github-api-01

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

20

//libraries /

recorded in such a way that the fail-
ure callbacks will receive them.

This example does not produce
any intermediate result, which is why
the third argument to Promise is set
to Void.

Now, consuming the promise
can be done in the following way:

public class AppController {

 @Inject private AppModel model;

 @Inject private Github github;

 @Inject private ApplicationEventBus eventBus;

 public void loadRepositories() {

 model.setState(RUNNING);

 github.repositories(model.getOrganization())

 .done(model.getRepositories()::addAll)

 .fail(t ->

 eventBus.publishAsync(new ThrowableEvent(t)))

 .always((state, resolved, rejected) ->

 model.setState(READY));

 }

}

The controller performs the same functions as before, but
the code is considerably cleaner. You can deine the SUCCESS,
FAILURE, ALWAYS callbacks in any order you deem neces-
sary for this particular case. Finally, there’s no way to force
the promise to wait in a blocking manner for the result to be
delivered; the API simply won’t allow it.

If you want, you can also switch to a more manual imple-
mentation for producing the promise, using DeferredObject.
This type allows you to set the computed or rejected value, as
well as publish intermediate results if needed. If you’ve ever
used the SwingWorker API, then you know how this behavior

plays out—the key diference being that notiications sent by
DeferredObject are sent in the background thread whereas
SwingWorker sends them inside the UI thread. Here’s how
DeferredObject can be used to manually set a promised result
or trigger a failure:

public class GithubImpl implements Github {

 @Inject private GithubAPI api;

 @Inject private ExecutorService executorService;

 @Override

 public Promise<List<Repository>, Throwable, Void>

 repositories(final String organization) {

 Deferred<List<Repository>, Throwable, Void> d =

 new DeferredObject<>();

 executorService.submit(() -> {

 Response<List<Repository>> r = null;

 try {

 r = api.repositories(organization).execute();

 } catch (IOException e) {

 d.reject(e);

 return;

 }

 if (r.isSuccessful()) { d.resolve(r.body()); }

 d.reject(new IllegalStateException(r.message()));

 });

 return d.promise();

 }

}

This time, you must handle any communication and pars-
ing errors, as well as explicitly schedule the background task
using an Executor or similar means. This particular usage of
DeferredObject comes in handy when writing tests, because
you can resolve or reject a promise at any time. The following
test case shows exactly how such a scenario (that is, writing

JDeferred
implements a
simpler API that
delivers the same
capabilities without
the drawbacks.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

21

//libraries /

tests) can be implemented using a combination of JDeferred,
Mockito, and dependency injection:

@RunWith(JukitoRunner.class)

public class AppControllerTest {

 @Inject private AppController controller;

 @Inject private AppModel model;

 @Test

 public void happyPath(Github github) {

 // given:

 Collection<Repository> rs =

 TestHelper.createSampleRepositories();

 Promise<List<Repository>, Throwable, Void> p =

 new DeferredObject<List<Repository>,

 Throwable, Void>().resolve(rs);

 when(github.repositories("foo")).thenReturn(p);

 // when:

 model.setOrganization("foo");

 controller.loadRepositories();

 // then:

 assertThat(model.getRepositories(), hasSize(3));

 assertThat(model.getRepositories(), equalTo(rs));

 verify(github, only()).repositories("foo");

 }

}

Here we can see how DeferredObject is used to set up an
expected result alongside a mocked instance of the Github
class. This particular test checks the happy path in which
everything works as expected. You could set up a failing path
by invoking rejected() instead, checking that the expected
exception occurred.

Conclusion

Promises enable you to handle computed results in a deferred
or asynchronous manner. Java 8 provides a type named
CompletableFuture that can be used as a promise. It allows
handling of results; transforming results into further values;
combining a result with other results; and handling excep-
tional cases when errors occur.

However, you must pay attention to the order in which
actions are attached to such a promise. Also, it’s possible
to block such a promise at any time by simply invoking the
get() method. JDeferred implements a simpler API that
delivers the same capabilities without the drawbacks. It also
allows you to publish intermediate results at any time during
the background computation. Examples of this latter behav-
ior can be seen in this code on GitHub. </article>

Andrés Almiray is a Java and Groovy developer and a Java

Champion with more than 17 years of experience in software de-

sign and development. He has been involved in web and desktop

application development since the early days of Java. He is a true

believer in open source and has participated in popular projects

such as Groovy, JMatter, Asciidoctor, and others. He is the found-

ing member and current project lead of the Grifon framework and

the speciication lead for JSR 377.

JDeferred library

tutorial on futures, promises, and JDeferred

Java 8 CompletableFuture (Javadoc)

tutorial on Java 8 CompletableFuture

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/aalmiray/javatrove/tree/master/github-api-02
http://jdeferred.org/
http://www.hascode.com/2015/09/using-deferred-objects-and-promises-with-java-8-and-jdeferred/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
http://www.baeldung.com/java-completablefuture

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

22

//libraries /

T oday, enterprise Java web application developers use
HTML in every aspect of a project. This work is made dif-

icult at times because parsing HTML content is a tedious task.
Doing so without a parser framework is a most undesirable
chore. Fortunately, there are a handful of Java-based HTML
parsers publicly available. In this article, I will focus on one of
my favorites, jsoup, which was irst released as open source in
January 2010. It has been under active development since then
by Jonathan Hedley, and the code uses the liberal MIT license.

What It Is

jsoup can parse HTML iles, input streams, URLs, or even
strings. It eases data extraction from HTML by ofering
Document Object Model (DOM) traversal methods and CSS
and jQuery-like selectors.

jsoup can manipulate the content: the HTML element
itself, its attributes, or its text. It updates older content based
on HTML 4.x to HTML5 or XHTML by converting deprecated
tags to new versions. It can also do cleanup based on whitelists,

tidy HTML output, and complete unbalanced tags
automagically. I will demonstrate these features
with some working examples.

All the examples in this article are based on
jsoup version 1.10.2, which is the latest available
version at the time of this writing. The complete
source code for this article is available on GitHub.

The DOM and jsoup Essentials

DOM is the language-indepen dent representa-
tion of the HTML documents, which deines
the structure and the styling of the document.
Figure 1 shows the class diagram of jsoup frame-
work classes. Later, I’ll show you how they map
to the DOM elements.

The org.jsoup.nodes.Node abstract class is
the main element of jsoup. It represents a node
in the DOM tree, which could either be the docu-
ment itself, a text node, a comment, or an ele-

MERT ÇALIŞKAN

jsoup HTML Parsing Library
Easily parse HTML, extract specified elements, validate structure, and sanitize content.

Element DataNode

tag : Tag

Node

parentNode : Node
childNodes : List<Node>

attributes : Attributes
baseUri : String
siblingIndex : int

Attributes

attributes :
LinkedHashMap<String, Attribute>

Document

Location : String

FormElement

element : Elements

TextNode Comment XmlDeclaration

text : String

Figure 1. jsoup class diagram

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jsoup.org/
http://github.com/jhy/jsoup
http://github.com/mulderbaba/jsoup-examples

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

23

//libraries /

ment—that is, form elements—within the document. The
Node class refers to its parent node and knows all the parent’s
child nodes.

The Element class represents an HTML element, which
consists of a tag name, attributes, and child nodes. The
Attributes class is a container for the attributes of the HTML
elements and is composed within the Node class.

Getting Started

You can obtain the latest version of jsoup from Maven’s Cen-
tral Repository with the following dependency deinition. The
current release will run on any version of Java since Java 5.

<dependency>

 <groupId>org.jsoup</groupId>

 <artifactId>jsoup</artifactId>

 <version>1.10.2</version>

</dependency>

Gradle users can retrieve the artifact with

org.jsoup:jsoup:1.10.2

The main access point class, org.jsoup.Jsoup, is the prin-
cipal way to use the functionality of jsoup. It provides base
methods that can parse an HTML document passed to it as a
ile or an input stream, a string, or an HTML document pro-
vided through a URL. The example in Listing 1 parses HTML
text and outputs irst the node name of the element and then
the HTML text owned by the element, as shown immediately
below the code.

Listing 1.

public class Example1Main {

 static String htmlText = "<!DOCTYPE html>" +

 " <html>" +

 " <head>" +

 " <title>Java Magazine</title>" +

 " </head>" +

 " <body>" +

 " <h1>Hello World!</h1>" +

 " </body>" +

 "</html>";

 public static void main(String... args) {

 Document document = Jsoup.parse(htmlText);

 Elements allElements =

 document.getAllElements();

 for (Element element : allElements) {

 System.out.println(element.nodeName()

 + " " + element.ownText());

 }

 }

}

The output is

#document

html

head

title Java Magazine

body

h1 Hello World!

Ways to select DOM elements. jsoup
provides several ways to iterate
through the parsed HTML elements
and ind the requested ones. You
can use either the DOM-speciic
getElementBy* methods or CSS and
jQuery-like selectors. I will demon-

CSS and jQuery-
like selectors
are powerful
compared with
DOM-specific
methods. They
can be combined
together to refine
selection.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

24

//libraries /

strate both approaches by pars-
ing a web page and extracting all
links that have HTML <a> tags.
The code in Listing 2 parses the
Java Champions bio page and
extracts the link names for all
the Java Champions marked as
“New!” (see Figure 2).

The marking was done by
adding a tag with text
New! right next to the link. So, I
will be checking for the content
of the next-sibling element of
each link.

Listing 2.

public class Example2Main {

 public static void main(String... args)

 throws IOException {

 Document document = Jsoup.connect(

 "https://java.net/website/" +

 "java-champions/bios.html")

 .timeout(0).get();

 Elements allElements =

 document.getElementsByTag("a");

 for (Element element : allElements) {

 if ("New!".equals(

 element.nextElementSibling()!=null

 ? element.nextElementSibling()

 .ownText()

 : "")) {

 System.out.println(

 element.ownText());

 }

 }

 }

}

The same extraction of the links can also be done with selec-
tors, as shown in Listing 3. This code extracts the links that
start with href value #.

Listing 3.

public class Example3Main {

 public static void main(String... args)

 throws IOException {

 Document document = Jsoup.connect

 ("https://java.net" +

 " /website/java-champions/bios.html")

 .timeout(0).get();

 Elements allElements = document.select

 ("a[href*=#]");

 for (Element element : allElements) {

 if ("New!".equals(element

 .nextElementSibling() != null

 ? element.nextElementSibling

 ().ownText() : "")) {

 System.out.println(element

 .ownText());

 }

 }

 }

}

Selectors are powerful compared with DOM-speciic methods.
They can be combined together to reine selection. In the
previous code examples, we are doing the New! text check by

Figure 2. Part of the HTML
page to be parsed

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

25

//libraries /

ourselves, which is trivial. The example in Listing 4 selects
the tag that contains the New! text, which resides after
a link that has an href starting with the value #. This really
shows the power of selectors.

Listing 4.

public class Example4Main {

 public static void main(String... args)

 throws IOException {

 Document document = Jsoup.connect

 ("https://java.net" +

 ".website/java-champions/bios.html")

 .timeout(0).get();

 Elements allElements = document.select

 ("a[href*=#] ~ font:containsOwn" +

 "(New!)");

 for (Element element : allElements) {

 System.out.println(element

 .previousElementSibling()

 .ownText());

 }

 }

}

Here, the selectors locate the tag as an element. I
then call the previousElementSibling() method on it, so as
to step one element back to the link. This select() method
is available in the Document, Element, and Elements classes.
Currently, jsoup does not support XPath queries on selectors.
More information about selectors is available at the jsoup site.
Traversing nodes. jsoup provides the org.jsoup.select
.NodeVisitor interface, which contains two methods: head()
and tail(). By implementing an anonymous class from that
interface and passing it as a parameter to the document
.traverse() method, it is possible to have a callback when

the node is irst and last visited. The code in Listing 5 uses
this technique to traverse a simple HTML text and outputs all
node details.

Listing 5.

public class Example5Main {

 static String htmlText = "<!DOCTYPE html>" +

 "<html>" +

 "<head>" +

 "<title>Java Magazine</title>" +

 "</head>" +

 "<body>" +

 "<h1>Hello World!</h1>" +

 "</body>" +

 "</html>";

 public static void main(String... args)

 throws IOException {

 Document document = Jsoup.parse(htmlText);

 document.traverse(new NodeVisitor() {

 public void head(Node node, int depth){

 System.out.println("Node start: "

 + node.nodeName());

 }

 public void tail(Node node, int depth){

 System.out.println("Node end: " +

 node.nodeName());

 }

 });

 }

}

The output from this traversal is as follows:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jsoup.org/apidocs/org/jsoup/select/Selector.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

26

//libraries /

Node start: #document

Node start: #doctype

Node end: #doctype

Node start: html

Node start: head

Node start: title

Node start: #text

Node end: #text

Node end: title

Node end: head

Node start: body

Node start: h1

Node start: #text

Node end: #text

Node end: h1

Node end: body

Node end: html

Node end: #document

Parsing XML files. jsoup supports parsing of XML iles with a
built-in XML parser. The example in Listing 6 parses an XML
text and outputs it with appropriate formatting. Note once
again how easily this is accomplished.

Listing 6.

public class Example6Main {

 static String xml =

 "<?xml version=\"1.0\"" +

 "encoding=\"UTF8\"><entries><entry>" +

 "<key>xxx</key>" +

 "<value>yyy</value></entry>" +

 "<entry><key>xxx</key>" +

 "<value>zzz</value>" +

 "</entry></entries></xml>";

 public static void main(String... args) {

 Document doc =

 Jsoup.parse(xml, "", Parser.xmlParser());

 System.out.println(doc.toString());

 }

}

As you would expect, the output from this is

<?xml version="1.0"encoding="UTF8">

<entries>

 <entry>

 <key>

 xxx

 </key>

 <value>

 yyy

 </value>

 </entry>

 <entry>

 <key>

 xxx

 </key>

 <value>

 zzz

 </value>

 </entry>

</entries>

It’s also possible to use selectors for picking up values from
speciied XML tags. The code snippet in Listing 7 selects
<value> tags that reside in <entry> tags.

Listing 7.

Document doc =

 Jsoup.parse(xml, "", Parser.xmlParser());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

27

//libraries /

Elements elements = doc.select("entry value");

Iterator<Element> it = elements.iterator();

while (it.hasNext()) {

 Element element = it.next();

 System.out.println(element.nodeName() +

 " - " + element.ownText());

}

Preventing XSS attacks. Many sites prevent cross-site script-
ing (XSS) attacks by prohibiting the user from submitting
HTML content or by enforcing the use of alternative markup
syntax, such as markdown. A clever solution to prevent mali-
cious HTML input is to use a WYSIWYG editor and ilter the
HTML output with jsoup’s whitelist sanitizer. The whitelist
sanitizer parses the HTML, and iterates through it and
removes the unwanted tags, attributes, or values according
to the whitelist built into the framework.

The example in Listing 8 deines a test method that
cleans up HTML text according to a simple text whitelist. This
list, as you will see in a moment, allows only simple text for-
matting with HTML tags: b, em, i, strong, and u.

Listing 8.

@Test

public void simpleTextCleaningWorksOK() {

 String html = "<div>" +

 "" +

 "Hello + Reader!</div>";

 String cleanHtml = Jsoup.clean(

 html, Whitelist.simpleText());

 assertThat(cleanHtml,

 is("Hello Reader!"));

}

The WhiteList class ofers prebuilt lists such as simpleText(),
which limits HTML to the previous elements. There

are other acceptance options, such as none(), basic(),
basicWithImages(), and relaxed().

Listing 9 shows an example of the usage of basic(),
which allows these HTML tags: a, b, blockquote, br, cite,
code, dd, dl, dt, em, i, li, ol, p, pre, q, small, span, strike,
strong, sub, sup, u, ul.

Listing 9.

@Test

public void basicCleaningWorksOK() {

 String html = "<div><p><a " +

 "href='javascript:hackSystem()" +

 "'>Hello</div>";

 String cleanHtml = Jsoup.clean(html,

 Whitelist.basic());

 assertThat(cleanHtml, is("<p><a " +

 "rel=\"nofollow\">Hello</p>"));

}

As seen in the test, the script call is eliminated and the tags
that are not allowed, such as div, are also removed. In addi-
tion, jsoup automatically completes unbalanced tags, such as
the missing </p> in our example.

Conclusion
This article, which previously appeared in Java Magazine but
has been updated here, shows only a subset of what jsoup can
do. It also ofers features such as tidying HTML, manipulating
HTML tags’ attributes or texts, and more. Put another way,
any HTML processing you might need to do is a likely candi-
date for using jsoup. </article>

Mert Çalişkan is a Java Champion and coauthor of PrimeFaces
Cookbook and Beginning Spring (Wiley Publications). He is the

founder of AnkaraJUG, which is the most active Java user group

in Turkey.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

28

//libraries /

There are many ways to build an application, but most of
the time you will pull in a framework or two and a few

libraries. Tooling tends to make this easy now, with build
tools, such as Maven and Gradle, connecting to a central
artifact repository of JAR iles. Thanks to the world of open
source, many thousands of libraries and frameworks are
available to choose from (and most companies have an inter-
nal artifact repository with even more). But what makes a
good library? How can it be designed well?

Styles of Library
When designing a library, it is useful to bear in mind some
common styles that libraries it into. Back in 2004, I identi-
ied two styles within Apache Commons: broad and shallow
versus narrow and deep.

The broad and shallow style has many public methods
for users to call (the broad part), each of which tends to
do relatively little processing (shallow). Using the library
focuses on inding the right class to call or create and then
following the syntax and operations detailed in the Javadoc.
Because the public methods are shallow, they tend to be
fairly separate from the others, and it is often possible to
split such a library into many smaller libraries. While often
this style of library consists of classes with many static
methods, they typically include instantiated classes, too.
Examples of this style include Apache Commons Lang,

Apache Commons IO, Google Guava, and Joda-Time.
The narrow and deep style has relatively few public

methods for users to call (narrow), but each method tends to
perform a decent amount of processing (deep). Using such a
library tends to involve speciic usage patterns that are docu-
mented at a high level—often outside the Javadoc. Examples
of this style are XML parsers and templating libraries such as
Apache FreeMarker. The key to making this approach work is
to have an obvious, well-documented public API and to hide
the internal classes.

In both styles, the library tends to have relatively small
bounds. The result is that if you ind the library you chose
is buggy or not to your taste, it tends not to be too hard to
replace it. This leads to a third style that might best be
described as a “business” library. Here, the library is more
speciic, perhaps used primarily in an industry vertical, and
adoption is a major architectural choice for an application.
In my day job, I work on Strata, the Duke’s Choice Award–
winning library for inance, which is a classic open source
example of this style. Most examples of this style are likely
to be private and company-speciic.

Dependencies
The ease of use and convenience of an artifact repository such
as Maven Central makes it all too easy to just pull in depen-
dencies. But when you do, consider how many other depen-

STEPHEN COLEBOURNE

Designing and Implementing
a Library
The chief designer of Joda-Time lays out best practices for writing your own library.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://marc.info/?l=jakarta-commons-dev&m=108601577728628&w=2
https://github.com/OpenGamma/Strata

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

29

//libraries /

dencies that one dependency has. Too quickly, you ind that
your application has hundreds of dependencies, and you can
face clashes between diferent versions, a situation termed
classpath hell. As such, all good libraries strive to minimize
their dependencies.

In my experience with Apache Commons and the Joda
projects, I have found that broad and shallow libraries work
best if they have no dependencies at all. Commons Lang,
Commons IO, and Google Guava all have no dependencies.

There is an interesting case with the Joda-Time and Joda-
Money libraries. Both of these broad and shallow libraries do
have a dependency—Joda-Convert—but that dependency is
optional. Most applications using Joda-Time do not need to
have Joda-Convert on the classpath. Only if you use the addi-
tional features it provides will you include it.

In my experience, narrow and deep libraries tend to be
more complex. As such, they often depend on a few other
libraries, which is ine as long as the dependencies are lim-
ited. Larger business libraries typically have a larger set
of dependencies, but this is usually ine because they are
so important to the application that the library drives the
dependencies of the application, not the other way around.

It doesn’t make sense to depend on a library for a tiny
amount of code, such as a few static utility methods. Instead,
consider copying portions of the library into yours with a
clear indication as to where the code came from. By keep-
ing track of the copied code, it
becomes easier to spot the point
at which the additional depen-
dency is worthwhile. Ideally, the
code will be package-scoped when
copied into your library, as it is not
really part of your API.

Finally, you should take extra
care using Google Guava in a low-
level library, because it tends to be

widely used yet incompatible between releases, the classic
classpath hell problem.

Integration
One tricky case can be integration, which is when a library
needs to provide code to interoperate with other libraries.
The most common way to do this is to release a core library
and one additional library for each integration. With this
approach, the core library is not burdened with the additional
dependencies, but the user must pick the correct additional
JAR ile.

An interesting alternative is to use optional dependencies.
With this approach, the library consists of a single JAR ile
with all the integration code included. However, each inte-
gration works only if the user also adds the integration JAR
ile to their classpath. This can be convenient for the user, as
the integration can be made to work transparently.

Best practice normally favors the irst approach, with
separate JAR iles. But when the integration code is relatively
small and convenience is important, the second approach can
be worthwhile to consider.

Structure
Most libraries consist of just a few packages, and libraries
consisting of just one package are quite common. When
designing a library, it can be useful to plan the package struc-
ture so it has a clear root package to aid irst-time users. This
is particularly important for narrow and deep libraries.

For example, the root package of the library com.foo
.shared should contain the most important entry points
to the library. Additional packages would contain classes
of lower importance, say, com.foo.shared.config and
com.foo.shared.model. Any code that should not be called
directly by users should go in an internal package, such as
com.foo.shared.internal or com.foo.shared.impl. In Java
releases through Java SE 8, users can, of course, access these

I have found that
broad and shallow
libraries work
best if they have no
dependencies at all.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

30

//libraries /

internal packages. In Java SE 9 modules, however, it will be
possible to properly restrict the internal packages so that
users cannot access them directly at all.

In addition to modules, library designers should con-
sider using package scope as much as possible. Package
scope is hugely underused in Java generally, but it is a great
tool for hiding your internal logic. Java SE 8, in particular,
enables designers to make much greater use of package
scope—thanks to the addition of methods on interfaces. Prior
to Java SE 8, your library might have had an interface, a fac-
tory for creating instances, and an abstract class to allow
for future change. Now, all three features can be combined:
instances can be created using static methods on interfaces,
and there is no need for an abstract class with default meth-
ods on interfaces. If the whole API can be deined by the
interface, it is possible to make the implementation classes
package-scoped, that is, created by the static factory meth-
ods on the interface. Suddenly, the public API has collapsed
from maybe ive public classes to one—a huge beneit for
later maintenance.

Features and Growth
Many libraries start out from a simple need to share code
between two projects. The code grows over time and eventu-
ally becomes unmanageable, whereas perhaps it should be
split. The issue here is that the library grew without a mission
statement. Why does this library exist? What problem is it
solving? Why should you use this piece of shared code rather
than writing it yourself?

By writing something down, often at the top of the home
page of the project or in the README ile, you set some
boundaries for the library. When requests arrive for new
features, it becomes easier to see whether the features are
inside or outside the boundaries. This allows you to push back
and reject the feature or perhaps create a new library.

If, however, the feature request
is within the boundaries for the
library, serious consideration
should be given to including it.
Libraries are shared code, and while
perhaps your use cases didn’t need
the feature, someone else’s might.
But it is important to watch out for
bloat, because as more features are
added, it becomes harder for new
users to learn the library and to
ind out what it contains. One way
to judge whether inclusion warrants
the added code is to consider how
much code is being shared and what the nearest workaround
is for callers. If the workaround is painful and the use case
seems sound enough, the added code should probably go into
the library.

If you are fortunate enough to be writing a standalone
library that isn’t just a sharing of code between two applica-
tions, one point to bear in mind is that YAGNI (“you aren’t
gonna need it”) typically does not apply. This is because your
aim is to serve the needs of the niche that the library sits in
so that users are conident that the code they might need will
be there when they need it. Doing this may well require addi-
tional features or convenience methods beyond those of the
minimal use case you have in mind.

Part of managing this growth over time is a plan for
compatibility. In most cases, libraries should follow semantic
versioning to clearly communicate the compatibility of each
version. Tools are available to check this as part of the build
process. To avoid classpath hell for your users, it is important
to achieve binary compatibility, so that a new version of the
library can be just dropped in. This can be painful for a
library author, but when many others depend on your library

My experience is that
if you follow a strict
approach of never
returning null, the
whole codebase
becomes much
clearer and safer
for users.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://semver.org/
http://semver.org/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

31

//libraries /

it is a necessity; a key part of the
success of Joda-Time is that users
can rely on the stable, compatible
API, just as they can with the JDK.

Good Design
A library generally sits at the bot-
tom of an application. As such, it
needs to be reliable and of high
quality. When the application calls
a library method, the application
needs to be certain that the library
will do what is asked of it. It turns
out that the best way to arrange this
is to use good, modern API design for the library.

Where possible, pass immutable objects into and out of
the library. Immutable objects are far clearer for the user:
they can be in only one state and will never be afected by
any complex concurrency in the application. Of course, for
the library designer, immutable objects entail more work.
You need to write factory methods and, potentially, a mutable
builder class. But the beneits pay of in the form of fewer
bugs. (Consider this: if you allow users to pass mutable
classes to your library, what happens when your users mutate
them while your library is processing?)

The API should also be well deined with regard to null.
The simplest approach is to reject null as an input to all
methods. Java now has Objects.requireNotNull(), which
can help here. An alternative is to accept null and treat it as
a no-op or default value, but as I learned with Joda-Time, this
approach is usually a very bad idea. As a general rule, meth-
ods that might have been deined to return null ive years
ago should now return Optional. My experience is that if you
follow a strict approach of never returning null, the whole
codebase becomes much clearer and safer for users.

Public API methods in the library should also follow
sensible and consistent naming. It is vital for users to be able
to ind the functionality they are looking for using naming
only. Consistency is key here. For example, it is ine to use an
abbreviation if it makes sense in the context of the library,
but use it consistently. And the general advice for initial
capitalization of acronyms still applies: you should prefer
HttpResult to HTTPResult.

To aid with compatibility, it is worth considering using a
design for key API methods in which a request bean is passed
in and a result bean is returned. This has the advantage that
when a new feature is needed, you can simply add to the
request/response bean rather than create a new method sig-
nature on the key API.

Documentation
Many developers ind documentation to be an annoyance that
gets in the way of writing the code. When building a library,
you simply can’t think like this. The end users of the library
are typically not known to you—they can’t just come ask you
a question at your desk. Your only realistic option is to provide
the documentation they need.

In practice, this means that the public API must have
good and clear Javadocs. In addition, package-level Javadocs,
overview Javadocs, and usage documents should be consid-
ered, particularly for narrow and deep libraries. These high-
level documents should explain how to use the library and
what the main entry point is, and they should identify which
packages should not be used directly.

One absolutely vital piece of documentation is infor-
mation about the thread safety of key lifecycle and session
classes. For example, when you use an XML or JSON parser,
there will typically be a single entry-point class. But should
you create a new instance each time? Or should you store it
in a static variable? The expected pattern, determined by the

I recommend the
Apache License
version 2.0 for
most libraries. It is
a good, well-written
license that is widely
used and easy for
users to accept.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

32

//libraries /

thread safety of each class, must be documented. If you don’t
do this, your users might conclude that your library doesn’t
understand the importance and diiculty of concurrency.

A similar discussion applies to objects that hold exter-
nal resources, such as streams and bufers. The documenta-
tion needs to be clear as to who should close the resource. If
the library itself manages resources, for example, through
an ExecutorService, it should implement AutoClosable and
clearly document the usage pattern.

The inal key piece of documentation is the license.
While libraries within a company don’t need this, open source
libraries must have one. I recommend the Apache License
version 2.0 for most libraries. It is a good, well-written license
that is widely used and easy for users to accept.

Conclusion
To design a good library takes time, and it is a task that
requires high-quality, clean code. After all, when building
an application, all developers can tell whether they are using
a good library or a bad one. So, if you are going to build a
library, build it well. Your users will thank you. </article>

Stephen Colebourne (@jodastephen) is a Java Champion who has

used Java since version 1.0. He is best known for his work on date

and time, through Joda-Time and the Java 8 java.time.* pack-

ages. He has many other open source projects under the Joda

and ThreeTen brands. Colebourne also writes blogs and speaks at

conferences. He works at OpenGamma, producing software for the

inance industry.

Joda-Time library

Example of Joda-Time’s detailed Javadocs

learn more

//java proposals of interest /

The wide range of image formats have not all enjoyed
the same level of support in Java SE. The Image I/O
Framework (javax.imageio), which is part of Java SE,
provides a standard way to plug in image codecs. Codecs
for some formats, such as PNG and JPEG, must be pro-
vided by all implementations. And other formats,
such as BMP, have some built-in support. However,
the widely used format TIFF is missing from the set of
required codecs.

There have been multiple requests over the years
for this format, from developers representing both
small and large independent software vendors. The
demand is even more relevant now because macOS uses
TIFF as a standard platform image format.

JDK Enhancement Proposal (JEP) 262 proposes
including a TIFF codec as part of javax.imageio. Suitable
TIFF reader and writer plugins, written entirely in Java,
were previously developed in the Java Advanced Imaging
API Tools Project. This JEP proposes to merge this TIFF
support into the JDK, alongside the existing image I/O
plugins. The package will be renamed javax.imageio
.plugins.tif, and it will become a standard part of the
Java SE speciication. (The XML metadata format will be
similarly renamed.)

As of the time of this writing, JEP 262 has been
approved and inalized, and the TIFF support will appear
in Java 9 when that release ships.

JEP 262: Built-in Support
for TIFF Files

FEATURED JDK ENHANCEMENT PROPOSAL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.joda.org/joda-time/
http://www.joda.org/joda-time/apidocs/org/joda/time/chrono/IslamicChronology.html
http://www.oracle.com/technetwork/java/iio-141084.html
http://www.oracle.com/technetwork/java/iio-141084.html

Register Now
New One-Day, Free Event | 20 Cities Globally

developer.oracle.com/code
Find an event near you:

• DevOps, Containers, Microservices & APIs

• MySQL, NoSQL, Oracle & Open Source Databases

• Development Tools & Low Code Platforms

• Open Source Technologies

• Machine Learning, Chatbots & AI

Explore the Latest Developer Trends:

http://developer.oracle.com/code

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

34

//databases /

Why should you need to use SQL when the same seman-
tics can be derived directly from Java 8 streams? If

you take a closer look at this objective, it turns out there is a
remarkable resemblance between the verbs of Java 8 streams
and SQL commands, as summarized in Table 1.

Streams and SQL queries have similar syntax in part
because both are declarative constructs, meaning they
describe a result rather than state instructions on how to
compute the result. Just as a SQL query describes a result set
rather than the operations needed to compute the result, a Java
stream describes the result of a sequence of abstract functions
without dictating the properties of the actual computation.

The open source project Speedment capitalizes on this
similarity to enable you to perform database actions using
Java 8 stream syntax instead of SQL. It is available on GitHub
under the business-friendly Apache 2 license for open source
databases. (A license fee is required for commercial data-
bases.) Feel free to clone the entire project.

About Speedment
Speedment allows you to write pure Java code for entire data-
base applications. It uses lazy evaluation of streams, mean-
ing that only a minimum set of data is actually pulled from
the database into your application and only as the elements
are needed.

In the following example, the objective is to print out
all Film entities having a rating of PG-13 (meaning “parents
are strongly cautioned” in the US). The ilms are located in a
database table represented by a Speedment Manager variable

PER MINBORG

Database Actions Using Java 8
Stream Syntax Instead of SQL
Speedment 3.0 enables Java developers to stay in Java when writing database applications.

S QL C OMM A ND JAVA 8 S T RE A M OP ER AT ION S

FROM stream()

SELECT map()

WHERE filter() (BEFORE COLLECTING)

HAVING filter() (AF TER COLLECTING)

JOIN flatMap() OR map()

DISTINCT distinct()

UNION concat(s0, s1).distinct()

ORDER BY sorted()

OFFSE T skip()

LIMIT limit()

GROUP BY collect(groupingBy())

COUNT count()

Table 1. SQL commands and their counterpart verbs in
Java 8 streams

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/speedment/speedment

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

35

//databases /

named films in this code snippet:

long count = films.stream()

 .filter(Film.RATING.equal("PG-13"))

 .count();

System.out.format(

 "There are %d films rated 'PG-13'", count

);

Now to the best part: immediately before the stream is about
to start, Speedment will introspect the stream pipeline and
determine that an equivalent but more eicient stream can
replace the present stream.

In addition, by enabling logging, you can see the exact
rendering of the SQL query, as follows:

SELECT COUNT(*) FROM 'sakila'.'film' WHERE

 ('rating' = 'PG-13' COLLATE utf8_bin)

So, in fact, the stream does not pull in a single ilm. It
merely lets the database count the given ilms, and then it
returns the result directly to the Java application. The code
above will produce the following output:

There are 223 films rated 'PG-13'

As you can see, there is no SQL
code in the Java application. (Note:
In the examples throughout this
article, I used a MySQL database.
If another database type, such as
Oracle Database or PostgreSQL,
were used, Speedment would ren-
der the stream to another SQL
query variant depending on that

database’s speciic syntax capability. This is something
Speedment handles automatically.)

How It Works
If you have worked with Java 8 streams before, the previous
example and those that follow will look familiar. Because
a Java 8 Stream is an interface, there can be many diferent
implementations of streams. Speedment comes with its own
Stream implementations that connect seamlessly to database
tables and lazily pull in rows as the streams are being con-
sumed. Furthermore, a Speedment stream introspects its own
pipeline before it starts. This means stream operations such
as filter() and sorted() can be moved from the stream’s
pipeline into a SQL query (more speciically, into its WHERE
and ORDER BY clauses, respectively), efectively eliminating
the need for writing SQL code altogether. Let’s take a closer
look at how this afects Java database applications.

Basic Examples
Throughout this article’s examples, I used a sample ilm
database called sakila. It was developed by the MySQL team
and has been available for about 10 years. The sample data-
base is open source and available directly from Oracle.

Speedment contains a tool that connects to an existing
database, extracts the schema metadata, and generates Java
code. The code generator generates objects corresponding
to the selected database tables. Consequently, a Java entity
interface Film is generated from the film table with getters
and setters for all its columns. For each table, a corresponding
Manager is also generated and, thus, a FilmManager is gener-
ated for the film table as well. Managers are used for creating
streams and other table-related operations.

Creating a Stream
Suppose you want to write an application that prints out all
Film entities. With Speedment, it looks like this:

Speedment
contains a tool
that connects to an
existing database,
extracts the schema
metadata, and
generates Java code.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://dev.mysql.com/doc/index-other.html

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

36

//databases /

films.stream()

 .forEach(System.out::println);

On the irst line, a Speedment stream is created using the
variable films (of type FilmManager). You will see later in the
article how Manager variables can be obtained. On the second
line, the stream is consumed by sending all its elements to
System.out. The partial output of the code snippet (only some
columns and only the irst three ilms) is shown below:

filmId = 1, title = ACADEMY DINOSAUR, rating = PG

filmId = 2, title = ACE GOLDFINGER, rating = G

filmId = 3, title = ADAPTATION HOLES, rating = NC-17

There are 1,000 ilms present in the sample database, and the
table has 13 columns.

Understanding Optimization
Optimization of stream operations during introspection is not
limited only to filter() operations. Consider the following
stream example:

long count = films.stream()

 .filter(Film.RATING.equal("PG-13"))

 .filter(Film.LENGTH.greaterThan(75))

 .map(Film::getTitle)

 .sorted()

 .count();

System.out.format("Found %d films", count);

This code creates a stream in which only those ilms having a
rating of PG-13 and a length of more than 75 minutes appear.
After iltering, the Film elements are mapped to String ele-
ments. This is possible because each ilm’s title is extracted
using the Film::getTitle method reference. After this step,

the stream of string elements is
sorted (according to the previously
extracted titles, in natural order),
and inally all the sorted strings
are counted.

Upon introspecting the stream,
Speedment determines neither the
map() nor the sorted() operator has
any efect on the inal count() out-
come, because these operators do
not change the number of elements
in the stream. The operator map() changes only the type of
the elements, and sorted() changes only the order in which
the elements appear in the stream. Therefore, eventually the
stream is reduced and rendered to the following SQL query:

SELECT COUNT(*) FROM 'sakila'.'film' WHERE

('rating' = 'PG-13' COLLATE utf8_bin) AND ('length'>75)

The code above produces the following output:

Found 181 films

So that Speedment can optimize a given stream, use predi-
cates derived from ields instead of anonymous lambdas. That
is, do this:

filter(Film.LENGTH.greaterThan(75))

instead of doing this:

filter(f -> f.getLength() > 75)

Classifying Films
Now suppose you want to group all the ilms by rating and
produce a Java map with all these groups. This can be done

With Speedment,
as with any object-
relational mapping,
entities can be
created, updated,
and deleted.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

37

//databases /

using standard Java 8 semantics applied to a Speedment
stream:

Map<String, List<Film>> map = films.stream()

 .collect(

 Collectors.groupingBy(

 // Apply this classifier

 f -> f.getRating().orElse("none")

)

);

map.forEach((k, v) ->

 System.out.format(

 "Rating %-5s maps to %d films %n",

 k, v.size()

)

);

Because the rating column is deined as NULLABLE in the
sample database, Speedment generates a corresponding
getRating() method that returns an Optional<String> rather
than just a String. This helps avoid accidental null pointer
exceptions in the application. Thus, if a ilm is not rated (its
rating is NULL in the database), the getRating() method
returns an Optional.empty() and the classiier defaults
to none.

The previous code might produce the following output:

Rating PG-13 maps to 223 films

Rating R maps to 195 films

Rating NC-17 maps to 210 films

Rating G maps to 178 films

Rating PG maps to 194 films

This is consistent with the earlier example in which there
were 223 ilms rated PG-13.

One-to-Many Relations
In the example database, the tables film and language
have a relation via a foreign key from film.language_id to
language.language.id. If the task were to print all ilms that
are in English, the following example is a way of doing it:

languages.stream()

 .filter(Language.NAME.equal("English"))

 .flatMap(films.finderBackwardsBy(

 Film.LANGUAGE_ID))

 .forEach(System.out::println);

This is how it works: irst, the English language is iltered
out. Then the actual relation between the tables is speci-
ied by applying a flatMap() operator. This operator takes
a Function that maps from a Language to a Stream<Film>
whereby the latter contains only ilms matching the particu-
lar language. In short, the penultimate line takes you from a
Stream<Language> to a Stream<Film>. This is a relation com-
monly referred to as a one-to-many relation because many
ilms can point to the same language. Speedment is aware of
the columns having foreign keys and only those columns can
be passed to the finderBackwardsBy() method, which ensures
full relational integrity at compile time.

CRUD Operations with Streams
With Speedment, as with any object-relational mapping
(ORM), entities can be created, updated, and deleted. These
operations can be integrated with Java 8 streams, as illus-
trated in the example below. Here, all language entities with a
name “Deutsch” are to be renamed “German”:

languages.stream()

 .filter(Language.NAME.equal("Deutsch"))

 .map(Language.NAME.setTo("German"))

 .forEach(languages.updater());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

38

//databases /

First, the language to be changed
is iltered out. Then a map() opera-
tion is added to the stream that,
when applied, takes a Language
entity and returns a (possibly new)
Language entity with the “name”
ield changed to “German.” On the
last row, the language updater()
is called for each language in
the stream. As its name implies,
a language updater() takes a
Language and then locates and updates the afected row in
the database.

Remember, Speedment optimizes the stream and pulls
in only those elements itting the ilter.

Get Started with Speedment
Speedment is available in the Maven Central Repository.
Enable Speedment in your projects by adding the following
coordinates in your pom.xml ile:

<build>

 <plugins>

 <plugin>

 <groupId>com.speedment</groupId>

 <artifactId>speedment-maven-plugin</artifactId>

 <version>${speedment.version}</version>

 </plugin>

 </plugins>

</build>

<dependencies>

 <dependency>

 <groupId>com.speedment</groupId>

 <artifactId>runtime</artifactId>

 <version>${speedment.version}</version>

 <type>pom</type>

 </dependency>

</dependencies>

The Speedment Maven plugin adds code generation to the
project. It also includes three other targets enabling you to
automate your Maven builds.

Make sure you use the latest release available and add
the runtime JDBC dependency for your selected database type
under the <dependencies> tag (as you would in any database
application). You must run your application under JDK 8u40
or later. Speedment is a completely self-contained runtime
with no external transitive dependencies. This is important
because it allows you to avoid potential version conlicts with
other libraries and the ever-lurking “JAR hell.” Furthermore,
there is a “deploy” variant available where all Speedment
runtime modules have been packed together into a single
compound JAR ile.

Initializing Speedment
Upon code generation, entities and managers are generated
for each table. At the same time, an Application and an
ApplicationBuilder are generated. These classes can be used
to manage the lifecycle of Speedment in your application.
Here is a typical example of how to create, use, and stop a
Speedment application:

SakilaApplication app =

 new SakilaApplicationBuilder()

 .withPassword("sakila-password")

 .withLogging(LogType.STREAM)

 .build();

LanguageManager languages =

 app.getOrThrow(LanguageManager.class);

Writing web
applications and
REST endpoints
using, for example,
Spring Boot or Java EE
is straightforward.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

39

//databases /

languages.stream()

 .forEachOrdered(System.out::println);

app.stop();

SakilaApplicationBuilder is a coniguration class that can
be used to set a number of coniguration parameters. In the
example above, the password that is going to be used when
connecting to the database is set. Logging of all streams is
enabled, causing stream SQL rendering to be shown in the
logs. Once the build() method is called, the coniguration is
frozen (that is, an immutable coniguration object is created)
and the Speedment application is started and is ready to use.
After the application is built, a LanguageManager is obtained
from the application. This manager can be used to create
streams from the language table. After that is done, a stream
of all languages is created and the entities are printed out.
Lastly, the Speedment application is stopped and any
resources being held (such as database connections in a
connection pool) are released.

Create the Application instance only once in your appli-
cation and keep it running until your application exits. Pass
the Application instance to your business logic or inject it in
your classes using Spring Boot or Java EE, for example.

Integration with Spring Boot
It is easy to integrate Speedment with Spring Boot. Here is an
example of a Speedment coniguration ile for Spring:

@Configuration

public class AppConfig {

 private @Value("${dbms.username}") String username;

 private @Value("${dbms.password}") String password;

 private @Value("${dbms.schema}") String schema;

 @Bean

 public SakilaApplication getSakilaApplication() {

 return new SakilaApplicationBuilder()

 .withUsername(username)

 .withPassword(password)

 .withSchema(schema)

 .build();

 }

 // Individual managers

 @Bean

 public FilmManager getFilmManager(

 SakilaApplication app

) {

 return app.getOrThrow(FilmManager.class);

 }

}

Therefore, when you need to use a Manager in a Spring model-
view-controller, you can now simply auto-wire it:

private @Autowired FilmManager films;

Serving Up a REST Endpoint
Writing web applications and
REST endpoints using, for exam-
ple, Spring Boot or Java EE is
straightforward. In the follow-
ing example, the task is to write
a method serveFilms(String
rating, int page) that returns
a stream of Film entities. The
rating controls the stream,
allowing only ilms with the
given rating to appear in the
stream. If rating is null, all ilms
are returned. Furthermore, the

Open source
Speedment makes
life easier for Java
developers and
allows them to express
database queries in
pure Java, using well-
known APIs.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

40

//databases /

page parameter indicates which page to render on the web
user’s screen. The irst page is page 0, the next is 1, and so on.
Finally, all ilms are ordered by length. All this can be done
with the following code:

private static final int PAGE_SIZE = 50;

private Stream<Film> serveFilms(

 String rating, int page)

{

 Stream<Film> stream = films.stream();

 if (rating != null) {

 stream =

 stream.filter(Film.RATING.equal(rating));

 }

 return stream

 .sorted(Film.LENGTH.comparator())

 .skip(page * PAGE_SIZE)

 .limit(PAGE_SIZE);

}

This code snippet could easily be improved to take parame-
ters that specify a dynamic sort order and a custom page size.

Performance and Future Work
Under the hood, Speedment converts a ResultSet to a Stream.
The raw conversion overhead compared to reading the
ResultSet with custom JDBC code and then converting each
row to an entity is in every practical aspect negligible.

Speedment further supports parallel streams so you
can process the results from a database query in parallel and
divide the work using the CommonForkJoinPool or any other
thread pool of your choice.

The Speedment runtime can be deployed under Java 9,
and then it supports the improved Java 9 Stream API including
the new methods Stream::takeWhile and Stream::dropWhile.

Currently, Speedment supports lazy joining of tables.
Semantic joins, by which it is possible to eagerly join tables,
are being planned. This capability will make it easier to
express diferent kinds of joins and will improve performance
for larger joins.

Speedment is open source for open source databases
and currently supports MySQL, PostgreSQL, and MariaDB. A
commercial implementation, Speedment Enterprise, supports
Oracle Database, Microsoft SQL Server, and IBM DB2 and
DB2/400. Support for additional database types is in the works.

Conclusion
Open source Speedment makes life easier for Java developers
and allows them to express database queries in pure Java
while using well-known APIs (such as java.util.Stream) that
are interoperable with a large number of other libraries. Using
introspection, Speedment is able to render a Java 8 stream
pipeline to SQL and lazily pull in relevant elements only as
the application needs them.

Per Minborg (@PMinborg) is a Palo Alto, California–based inven-

tor, developer, JavaOne alumnus, and coauthor of the publication

Modern Java. He has 20 years of Java coding experience and runs

Minborg’s Java Pot blog. Minborg is a frequent contributor to open

source projects.

Code for the examples in this article

Speedment Javadoc

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://minborgsjavapot.blogspot.com/
https://github.com/speedment/oracle-java-magazine-examples
http://www.javadoc.io/doc/com.speedment/runtime-deploy

http://www.devoxx.pl

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

42

//ix this /

In the hope that you liked the mix of questions in my pre-
vious column, I’ll continue with questions that simulate

the level of diiculty of the Oracle Certiied Associate exam,
which contains questions for a more preliminary level of cer-
tiication. I also include some more-advanced questions that
simulate those from the 1Z0-809 Programmer II exam, which
is the certiication test for developers who have been certiied
at a basic level of Java 8 programming knowledge and now are
looking to demonstrate greater expertise.

As before, I avoid beginner questions and stay at the
intermediate and advanced levels, which are marked as such.

Question 1 (intermediate). Given this fragment:
String[][] x = new String[1][]; // line n1

x[0][0] = "Fred"; // line n2

System.out.println("name is " + x[0][0]);

What is the result?

a. Compilation fails at line n1.
b. Compilation fails at line n2.
c. An exception is thrown at line n2.
d. name is Fred.
e. name is null.

Question 2 (intermediate). Given this code:
public void aMethod() {

 // line n1

 for (int x = 0; x < 10; x++) {

 // line n2

 }

 // line n3

}

Which three of the following are true?
a. Inserting { int x = 100; } at line n1 results in a compi-

lation error.
b. Inserting int x = 100; at line n1 results in a compilation

error.
c. Inserting { int x = 100; } at line n2 results in a com-

pilation error.
d. Inserting int x = 100; at line n2 results in a compila-

tion error.
e. Inserting int x = 100; at line n3 results in a compilation

error.

Question 3 (advanced). Given a directory hierarchy such that
the root directory / contains a subdirectory a/, that subdirec-
tory a/ contains a subdirectory x/, and that subdirectory x/
contains a subdirectory y/, and also given that a ile a.txt is in
subdirectory x/ and a ile b.txt is in subdirectory y/, like this:
/

└─ a/
 └─ x/
 ├─ a.txt
 └─ y/
 └─ b.txt

SIMON ROBERTS

Quiz Yourself
Intermediate and advanced test questions

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

43

//ix this /

Suppose that all the iles and directories are plain and regular
in nature and fully accessible by the executing code, that the
following setup code runs with a current working directory of
a/, and before any other code:

Path dir = Paths.get("./x").toAbsolutePath();

Which of the following fragments produce the following output?

(All compile and run normally.)
/a/x/a.txt

a. Files

 .list(dir)

 .forEach(System.out::println);

b. Files

 .walk(dir)

 .filter(Files::isDirectory)

 .forEach(System.out::println);

c. Files

 .walk(dir.normalize())

 .filter(Files::isRegularFile)

 .forEach(System.out::println);

d. Files

 .find(dir, 1, (x, y) -> Files.isDirectory(x))

 .forEach(System.out::println);

e. Files

 .find(dir.normalize(), 1, (x, y) ->

 !Files.isDirectory(x))

 .forEach(System.out::println);

Question 4 (advanced). Given these descriptions:
1. Access by a single-threaded program
2. Access by a multithreaded program
3. High frequency of reading
4. High frequency of writing

5. Low frequency of reading
6. Low frequency of writing

Which combination would make it appropriate to use a

CopyOnWriteArrayList?

a. 1 and 4 in the same program
b. 1 and 6 in the same program
c. 2 and 4 in the same program
d. 2, 3, and 6 in the same program
e. 2, 4, and 5 in the same program

Question 1. The correct answer is option C. This question
probes the nature of Java’s multidimensional arrays. In fact,
it’s often said that Java does not have multidimensional
arrays, but that it allows arrays of anything, including arrays
of arrays. While this position is debatable (the language speci-
ication both asserts it and contradicts it) and it is certainly a
ine distinction, it embodies an important and useful truth.
Therefore, in the declaration of x in line n1, x is not an array,
and even more, x is not a two-dimensional array. Rather, x
is, as always, a reference. The variable x can refer to a simple,
single-dimensional array, but the elements of that array must
themselves be arrays (or be null). Those secondary arrays must
in turn be arrays of references to String, or they must be null.

So far, so good. What does x refer to in this case? The ini-
tialization expression String[1][] is interesting. It instanti-
ates a single array with one element. The element type of that
array is “array of Strings,” but because the second square-

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

44

//ix this /

bracket pair is empty, no secondary array is created. Notice
that this syntax is legal (and useful), so the compilation fail-
ure proposed in option A is false.

Whenever Java allocates heap memory for an object (and
arrays are objects), the memory is zeroed before any further
initialization (such as invoking a constructor) occurs. This
means that the single element of the array that is created
contains a null pointer. That single array element is x[0], and
given that no other assignment is made to it in the code, its
value is null. The code x[0][0] is syntactically legitimate, so
option B is false. It would be interpreted as follows: “Follow
the reference in the variable x to an array. Take the irst ele-
ment of that array, and follow that reference to another array.
Take the irst element of that array and use it as a reference to
a String.” Of course, in this case, x[0] is a null pointer, so the
attempt to ind the subarray throws a NullPointerException,
which means that option C is true.

Options D and E are both false, because the code never
prints anything; it crashes with the NullPointerException
before that point. In fact, if line n2 did not exist, the same
NullPointerException would occur at the output line, because
the print expression also attempts to dereference the null
pointer that is x[0].

Question 2. The correct answers are options B, C, and D. In
Java, variables are block scoped. Generally, that means that a
variable is visible from the point of its declaration to the end
of the block that encloses the declaration. In this case, that
block is the following:

{

 // general code, x not in scope because

 // it's not yet declared

 int x = 99;

 // general code, x in scope

} // scope of x ends here

On this basis, option A does not cause a compilation error,
because the declaration of int x that it contains is entirely
local to the block. Hence, option A is incorrect.

However, in option B, the variable introduced has a scope
that extends throughout the for loop, the block associated
with that loop, and all the way to the closing curly brace fol-
lowing line n3. As a result, the variable declared in the for
loop becomes a duplicate variable x and the code would not
compile. Because of this, option B is a correct answer.

A variation on the simple description of scope above
applies to for loops, formal parameters of methods, try-
with-resources, and catch blocks. These structures have
broadly similar forms with variable declarations enclosed in
parentheses and with a block immediately following the clos-
ing parenthesis. In these situations, the scope of the vari-
able begins with its declaration, but the scope ends with the
closing brace of the following block. If a for loop has a single
subordinate statement, rather than a block, the scope ends at
the end of that statement. It’s probably a very bad idea stylis-
tically to leave out the braces, even when only a single state-
ment is controlled by the loop. Therefore, the preferred style
is the following:

for (int x = 0; x < 10; x++) {

 // x in scope

} // scope of x ends here

In particular, notice that although a variable declaration does
not escape the block that contains its scope, it does pene-
trate inside any nested blocks. In this case, any attempt to
deine a new variable x inside the for loop (whether sur-
rounded by a block of its own or not) will fail, because the x
declared in the for loop’s control structure results in the new
declaration being a duplicate. Because of this, options C and
D both result in compilation errors and they are, therefore,
correct answers.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

45

//ix this /

Because the declaration of int x in the for loop has a
scope that ends with the end of the block that is subordi-
nate to that loop, there’s no variable x in scope at line 3. As a
result, adding the declaration in option E does not cause any
problems, and option E is incorrect.

A side note on exam questions: as a rule, questions try to
avoid using negatives, because they’re easy to miss. In this
case, notice that the question asks a positive question, but the
options refer to “result in a compilation error.” This might be
unexpected, but be sure to read the question that’s actually in
front of you and try to avoid letting your brain make assump-
tions. Programmers know that close attention to detail is
critical in this line of work, so be sure to use that skill when
answering questions, too.

Question 3. The correct answer is option E. This is a ques-
tion that demands a certain knowledge of Java’s APIs. There
aren’t many questions of this kind, because there’s an argu-
ment that this kind of information can readily be looked up
and need not be learned. On the other hand, it’s not a bad idea
to have a broad knowledge of the kinds of features available
in the APIs, because it’s common to see handwritten code
that duplicates (and commonly does so with errors) capabili-
ties that are provided in a core API. After all, if you don’t even
know the capability exists, you’re not very likely to look up
the details of how to use it. In a learning situation, such as
reading this article, it’s often interesting to discover what
features are available that might be unfamiliar.

In this question, you’re told that all the code compiles
and runs, so from that you know that there must be ive static
methods in a class called Files. By the way, this class full
of utilities was introduced with Java 7, so it’s actually new
enough that many programmers haven’t found it yet. Files
ofers many useful methods for ile manipulation, read-
ing, and writing, and if this class is new to you, it’s worth
a look if you ever have to manipulate iles. The methods

used in this question are list, walk, find, isDirectory, and
isRegularFile.

The methods isDirectory and isRegularFile behave as
their names suggest. They take a Path object as an argument
and return a Boolean value indicating whether Path describes
a directory or a regular ile (that is, a ile that can hold data).
They both actually have a second argument that indicates
how to handle links. The methods use varargs, so the second
arguments are optional—which is why it doesn’t show up in
these examples.

The method Files.list creates a stream of Path objects
that enumerate the contents of the argument directory. The
Path class, as can reasonably be inferred from the given
source code, represents a ile or directory name, possibly
including path information. It’s also reasonable to infer that
the toString method of a Path returns a reasonable textual
representation. If this weren’t the case, none of the options
could create the output required. However, the Files.list
method enumerates the entire contents of the directory that
it examines, which means that in this case, it refers not only
to the a.txt ile but also to the y directory. For this reason,
option A is incorrect.

Another point about the Path class is that it can repre-
sent either relative or absolute paths—for example, ./x/a.txt
or /a/x/a.txt, respectively. In this case, the preamble code
forces the Path object into an absolute-path mode, but the
Path referred to by dir is actually /a/./x/, and the dot stays
in the output. This, too, means that option A must be incor-
rect. To remove this excess dot, you can invoke the normalize
method on the Path object. This results in a Path that has had
references to . and .. cleaned up without changing the target
of the Path object. This fact allows you to reject options B and
D for the same reasons.

Next, consider the Files.walk method. This method
creates a Stream<Path> that enumerates all the items in the
starting directory and subdirectories. However, because this

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

46

//ix this /

descends into subdirectories, the stream created in option
B would initially include directories x and y and iles a.txt
and b.txt. A ilter is applied to this stream that will allow
only directories to pass, and this means that the output will
be /a/./x and /a/./x/y. This means that the wrong items
are shown, and the formatting has an excess dot. Therefore,
option B is incorrect.

Option C also uses the walk method. It starts by call-
ing normalize on the starting directory, so the format will
be correct, and it ilters out the directories, leaving the iles.
However, the output includes all the iles in the tree and,
therefore, will include both /a/x/a.txt and /a/x/y/b.txt.
Because of this, option C is incorrect.

The third method that you must consider is the
Files.find method. This is very similar to the walk method,
in that it creates a Stream<Path> that represents items pulled
recursively from the directory hierarchy. The diference is
that the find method can exclude items from that stream.
To be fair, you can remove items using a ilter applied to the
stream obtained from a walk operation. That’s illustrated in
options B and C. However, downstream iltering is typically
less eicient. In the case of a find operation, the path and
ile attributes are passed into the third argument of the find
method (which is BiPredicate<Path, BasicFileAttributes>).
These ile attributes are read when the directory is irst
scanned. In contrast, the downstream ilter—as in options B
and C—requires that the information be read a second time,
which is less eicient.

The BiPredicate operation must return true if a con-
tender Path is to be included in the stream that find creates.
On that basis, option D would enumerate the directories, not
the iles, and must, therefore, be incorrect.

The find method also has the ability to limit the depth
of recursion down the directory tree. This is the purpose
of the second argument (the numeric one). In this case, the
value 1 allows examination of the contents of the directory

that is speciied in the irst argument. The value 1 in option E
is suicient to prevent the stream from including the ile
b.txt. Also, because the irst argument is dir.normalize(),
the format of the output is correct and does not include the
un desired dot. Therefore, option E is correct.

As a side note, the find method takes an optional fourth
argument that allows you to specify whether the recursion
should follow links or not.

Question 4. The correct answer is option D. The CopyOnWrite
ArrayList class is deined in the java.util.concurrent pack-
age. Functionally, it provides an implementation of the List
interface, but it is speciically designed to help you handle
scalability issues.

If a system is “scalable,” this means that as you add more
compute hardware to it, it becomes capable of handling more
work in the same amount of time. Ideally, if you doubled the
amount of hardware, you’d double the throughput. However,
usually you get diminishing returns. How badly those
throughput returns diminish is deined mathematically by
Amdahl’s law. In simpliied terms, Amdahl’s law says that the
more often, or the longer, that threads have to wait for one
another, the less the system is able to beneit from adding
more hardware to it—that is, the less scalable it is. Modern
systems are commonly expected to scale well, so it’s impor-
tant to design them in a way that minimizes the time that
threads have to wait for each other.

The copy-on-write structures in Java’s concurrent API
address a very speciic situation. If a program has a data
structure that is being accessed at very high rates by multiple
threads, but all of those threads are reading and never alter-
ing the data, no locking is needed, and the threads need not
wait for one another. However, if any thread wants to make
a change, normally no other threads can be allowed to access
the data while that change is being made, and a great deal of
waiting results. That waiting causes a loss of scalability.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

47

//ix this /

Now suppose that a program does a lot of concurrent
reading, but occasionally a thread wants to modify the data.
One approach would be to have the read operations be unpro-
tected (so no loss of scalability occurs). This means that no
thread can ever be permitted to modify the data. Therefore,
when a modiication must be made, the thread that wants
to do this starts by making a copy of the data—that’s a read
operation, so it’s completely safe. Then, in the private copy,
the writing thread can safely make an update. The reading
threads can continue while this is going on, although they are
getting “stale” data at this point. If that staleness matters
(it often doesn’t), this approach is unsuitable. At the point
that the change has been completed, the structure can start
directing reading threads at the updated data set.

Notice that this copy operation could be hugely expensive
for a large list, and on that basis, this approach is useful only
if all of the following are true:

■■ Many threads need concurrent read access.
■■ It’s very rare for threads to modify the data.
■■ You need to maintain the scalability of the system.
■■ It’s OK that reading threads are seeing data that’s a little

stale from time to time.
A single-threaded system is not scalable anyway, because it
has no ability to use additional CPUs. Therefore, item 1 must
be invalid and item 2 is a requirement. Because high read
rates and low write rates are needed, you can see that items
3 and 6 are also requirements, which means that option D is
the only correct option. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s

irst Java classes in the UK. He created the Sun Certiied Java

Programmer and Sun Certiied Java Developer exams. He wrote

several Java certiication guides and is currently a freelance edu-

cator who teaches at many large companies in Silicon Valley and

around the world. He remains involved with Oracle’s Java certiica-

tion projects.

//user groups /

THE BANGLADESH JUG
The Bangladesh JUG
(JUGBD) started in August
2013 as an efort to bring
the Java developers of
Bangladesh together. Java
is one of the most popular
languages in Bangladesh.
Despite that, there has
been a lack of an active and
organized community to
bring developers under the

same roof to discuss all things Java. JUGBD is an attempt to
address these issues, particularly over great tea.

The history of software development in Bangladesh goes
back roughly 20 years, and software export began around the
time the internet started getting popular. Consequently, Java
was one of the irst languages to enjoy widespread adoption
among Bangladeshi developers. A tight-knit community grew
around it but eventually became inactive. JUGBD was formed
to revive the community and ensure that it is self-sustaining.

JUGBD organizes physical meetups sponsored by local
software irms, as well as occasional unsponsored virtual
meetups. These meetups primarily consist of a series of talks
given by Bangladeshi as well non-Bangladeshi developers.
Topics range from absolute beginner level to make students
interested in Java, to advanced level aimed at seasoned devel-
opers. The next meetup is expected to attract as many as 100
professional developers and students. Additionally, individual
community members participate in the Java Community
Process, and the JUGBD organization aims to participate in
the process in the near future.

You can visit JUGBD at its website, its Facebook group, or
the meetup group.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.jugbd.org
https://www.facebook.com/groups/jugbd
https://www.meetup.com/jug-bd/

ORACLE.COM/JAVAMAGAZINE /// MAY/JUNE 2017

48

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your sub-

scription, please contact the folks

at java@omeda.com, who will do

whatever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on our

decision whether to publish your article

or letter, cookies and edible treats will

be gratefully accepted by our staf at

Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A-3133,

Redwood Shores, CA 94065, USA.

 Subscription application

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

